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PRELIMINARIES

Structure
1.1. Introduction.
1.2. Definitions.

1.1. Introduction. This chapter contains definitions and results related to groups, cyclic group,
subgroups, normal subgroups, permutation group, centre of a group, homomorphism and isomorphism.
All of these results will be helpful throughout the further study of the course.

1.1.1. Objective. The objective of the study of these results is to understand the basic concepts and have
an idea to apply them in further study of the course.

1.2. Definitions.

1.2.1. Cartesian Product of Two Sets. Let A and B be two non-empty sets. Then, the set of all distinct
ordered pairs whose first co-ordinate is an element of A and whose second co-ordinate is an element of
B is called cartesian product of A and B and is denoted by AxB . For example, let

A= {1,2}, B= {4,5}, then
AxB = {(1,4),(1,5),(2,4).(2,5)} and BxA = {(4,1),(4,2),(5.,1),(5.2)}.

Thus, in general, AxB # BxA if A # B. Also, AxB = ¢ if A or B or both of A and B are empty sets.

1.2.2. Function. Let A and B be two given non-empty sets. A correspondence denoted by f, which
associates to each member of A a unique member of B is called a function. The function f from A to B is
denoted by f: A — B.

1.2.3. Binary Operation. A mapping f: SxS — S is called a binary operation on the set S.

1.2.4. Algebraic Structure. A non-empty set S equipped with one or more binary operations is called an
algebraic structure. Suppose ‘*’ is a binary operation on S. Then, (S,*) is called an algebraic structure.

1.2.5. Group. LetG be a non-empty set with a binary operation ‘*’. Then, G is called a group w.r.t.
binary operation ‘*’ if following postulates are satisfied:

(i) Associativity
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(ii) Existence of Identity
(iii) Existence of Inverse.

1.2.6. Abelian Group. A group G is called an Abelian group or commutative group if in addition to
above postulates G also satisfies the commutative law.

1.2.7. Important Results.

(i) The identity element in a group is unique.

(ii) Every element in a group have a unique inverse.

(iii) If a,b,c be elements of G such that ab = ac, then b = ¢ (Left cancellation law)

and ba = ac, then b = ¢ (right cancellation law)

(iv) If ae G, then (a")_] =a.
(v) IfabeG,then (ab) =b"a"".

(vi) If G is an Abelian group, then for all a,b € G and any integer n, we have (ab)" =a"b".

(vii) If every element of the group is its own inverse, then the group is Abelian.

(viii) If a group has a finite number of elements, this number is called the order of the group and the
group is called finite group. A group with an infinite number of elements is called an infinite group.

(ix) If G is a group such that (ab)" =a"b" for three consecutive integers m and for all a,b € G, then G is
Abelian.

1.2.8. Subgroup. A non-empty subset H of a group G is said to be a subgroup of G if H itself is a group
w.r.t. the same binary operation as in G.

1.2.9. Proper and Improper subgroups. The subgroups {e} and G itself are called improper subgroups
of G. All other subgroups, other than {e} and G, are called proper subgroups of G.

1.2.10. Coset of a Subgroup. LetG be a group and H is any subgroup of G. Let ‘a’ be any element of G.
Then, the set Ha = {ha ‘he H} is called a right coset of H in G generated by ‘a’. A left coset aH can be

defined in a similar way. Also, a subset is called a coset of H in G generated by ‘a’ if Ha = aH.

1.2.11. Normal Subgroup. A subgroup N of a group G is said to be a normal subgroup of G iff Na = aN
for all a e G, that is, right and left cosets are same for every element of G. We denote a normal
subgroup N ofa group Gby N A G.

1.2.12. Remark. (i) A subset H of a group G is a subgroup iff ab”' € H forall a,beH .
(ii) A finite subset H of a group G is a subgroup iff abe H forall a,beH.
(iii) Let H and K be two subgroups of a group G. Then, the set
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HK = {x : X=hkwhereheH,keK}

is a subgroup of G iff HK = KH.
(iv) IfHis asubgroup of Gthen Hg=H=gH iff ge H.
v) Any two right(left) cosets of a subgroup are either disjoint or identical.

(vi)  IfHis a finite subgroup of G. Then, o(H) =o(Ha) forall aeG.

(vii) A group G# { e} which does not have any non-trivial normal subgroup is called a simple
group.

(viii) A subgroup H of a group G is normal iff g~'hg € H forevery he H,g € G.

(ix) Every subgroup of an Abelian group is a normal subgroup.

(x) Let H be a subgroup of G. The number of distinct right cosets of H in G is called the index of H
in G and written as [G : H].

(xi) If[G:H]=2,then H is normal in G.

(xii) A subgroup H of a group G is a normal subgroup of G iff the product of two right cosets of H in
G is again a right coset of H in G.

(xiii) Every subgroup of a cyclic group is cyclic.
(xiv) Order of a finite cyclic group is equal to the order of its generator.
(xv) Ifthe order of a group is a prime number, then the group is cyclic and hence Abelian.

1.2.13. Cyclic group. A group G is said to be cyclic group generated by an element a € G if every

g € G is such that g =a' for some integer t.

1.2.14. Order of an element. Let G be a group and a € G and the composition being denoted by
multiplication. By the order of an element a € G, we mean the least positive integer n, if exists, such
that a" = e, the identity in G.

1.2.15. Results. (i) Let G be a finite group and a € G, then o(a)/o(G).
(ii) Let G be a finite group and a € G, then a”V=e.
(iii) If a € G and o(a) =n,then a' =e iff n/t (n divides t).

n

(iv) If o(a):n, then o(ak):w.
g.cd.(n,

1.2.16. Homomorphisms. If (G,.) and (5,*) are two groups. A mapping f:G—)E is called a

homomorphism, if f(x.y) = f(x)*f(y) forall x,yeG.
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1.2.17. Results. If / is a homomorphism from the group G to the group G , then

i) f(e)= e, where e and eare identities of G and G respectively.

i) f(g")=(s(g)) forall geG.

(i11) it is called epimorphism, if it is onto.

(iv) it is called monomorphism, if it is one — one.

(v) itis called isomorphism, if it is one — one and onto. We write as G = G
(vi) it is called endomorphism, if G =G .

1.2.18. Kernel of a Homomorphism. Let /' : G — Gbea homomorphism. Then, the kernel of f is the
set Kerf = { geG: f(g)=e, the identity element of 5} .

It should be noted that:

(1) Kerf AG.

(i) f is monomorphism iff Kerf :{e}.

(ii1)) A homomorphism from a simple group is eithe trivial or one-to-one.

1.2.19. Quotient Group. Let G be a group and H be a normal subgroup of G, then the set G/H (G mod
H) of all cosets of H in G is a subgroup w.r.t. multiplication of cosets. Itis called quotient group or factor
group of G by H. If a,b € G, then HaHb = Hab. The identity element of G/H is H.

1.2.20. Canonical Homomorphism. The mapping /:G — G/ H defined by f(g)=Hgforall geG

is an onto homomorphism, where H be a normal subgroup of G. It is called natural or canonical
homomorphism and Kerf = H .

1.2.21. Fundamental Theorem of Homomorphism. If Gis homomorphic image of G under f (that is,

f 1is onto), then Aer =G.

1.2.22. First Theorem of Isomorphism. Let /' be a homomorphism of a group G onto a group G . Let
K is any normal subgroup of G and K = {x eG: f(x) € E} =1 (E) Then, K is normal subgroup of

.. G :5_
G containing ker /' and %(_ %{ .
1.2.23. Second Theorem of Isomorphism. Let / and K are subgroups of any group G, where H A G

. Then, %mK;HK/H'
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1.2.24. Third Theorem of Isomorphism. Let G be any group and H,K be two normal subgroups of

G such that H < K . Then, %;(%{/K/ )
H

1.2.25. Permutations. SupposeS is a finite set having n distinct elements. Then, a one-one mapping of S
onto itself is called a permutation of degree n.

Let § :{al,az,...,an} be a finite set having n distinct elements. If f:S — S is a one-one onto

mapping, then f is a permutation of degree n. Let f(a)=b,f(a,)=b,.....f(a,)=b, , where

" %n o

. a a,...a,
{a,a,,...,a,} ={b,b,,...,b,}. Then, f is writtenas f = b b bl
1 2" "n

If S is a finite set of n distinct elements, then we have |n distinct arrangements of these n elements. So
there will be |n distinct permutations of degree n. the set of all permutations of degree n is called

symmetric set of permutations and is denoted by P, or S, .

1.2.26. Product of Permutations. Product of two permutations f and g of degree n is given by first

a a,...a
carrying out the operation defined by g and then by f. It is denoted by fog. If f Z(bl b2 an
1 2 "n

b b ...b, a a,...a,
. Then, gof = .
c, ¢ € ...C,

1.2.27. Results. (i) The set S,of all permutations of n symbols is a finite group of order [n w.r.t. product

and g:(

aq C ...

of permutations.

(i1) This group is Abelian for » <2 and non-abelian for n>3.

a a,...a, a. ...a

n

1.2.28. Cyclic Permutation. Let f =[ j It is cyclic of length k and can be

a, ay...a,a,,...a

n

written as f =(q, a, ...q,).

1.2.29. Transposition. A cyclic permutation of length 2 is called a transposition.

1.2.30. Inverse of a Cycle. Let f :(a1 a, ... ak) be a cycle of length k and degree n. Then,
' =(a, a,. ..ak)fl =(a, a, ...a,).

1.2.31. Disjoint Cycles. Two cycles are said to be disjoint if they have no object in common in their
one-rowed representation.

1.2.32. Results. (i) Any two disjoint cycles commute with each other.
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(i) A permutation is said to be an “even permutation” if it can be expressed as a product of an even
number of transpositions and is called “odd permutation” if it can be expressed as a product of odd
number of transpositions.

For example, (1234 5)=(12)(13)(1 4)(1 5) which is product of even number of permutations and so
is even permutations.

(ii1) Product of two even(odd) permutations is again an even permutation.
(iv) The set of all permutations in S, is a normal subgroup of S,, is denoted by A, and is called

|n

alternating group of order n and has En elements.

(v) The group A, is simple for n = 1,2,3. But A4 is not simple. However, A, is simple for n>35.

1.2.33. Centre of a group. Let G be a group then the centre of G is given by
Z(G)=C(G)={xeG:xy=yx forally e G}.

1.2.34. Normalizer of a subgroup. Let G be any group and H be its subgroup. Then, normalizer of H in

G is given by
N(H)={xeG:xH = Hx}.

N(H) is the largest subgroup of G in which H is normal. In particular, H A G iff N(H)=G.

1.2.35. Result. (i) If o(G) = p" for some prime p, then centre of G is non-trivial.

(i) If o(G) = p*, where pis a prime, then G is abelian.

Books Suggested:

1. Luther, 1.S., Passi, 1.B.S., Algebra, Vol. I: Groups, Vol. III: Modules, Narosa Publishing House
(Vol. 1-2013, Vol. III -2013).

2. Sahai, V., Bist, V., Algebra, Narosa Publishing House, 1999.

3. Malik, D.S., Mordenson, J.N. and Sen, M.K., Fundamentals of Abstract Algebra, McGraw Hill,
International Edition, 1997.

4. Bhattacharya, P.B., Jain, S.K. and Nagpaul, S.R., Basic Abstract Algebra (2nd Edition),
Cambridge University Press, Indian Edition, 1997.

5. Artin, M., Algebra, Prentice-Hall of India, 1991.



THE SYLOW THEOREMS

Structure
2.1.Introduction.
2.2.Conjugate of an element.
2.3.Commutator.
2.4.The Sylow Theorems.
2.5.Structure of Finite Abelian Groups.
2.6.Survey of Groups.
2.7.Check Your Progress.
2.8.Summary.

2.1. Introduction. This chapter contains many important results related to the p-groups, Sylow p-
subgroups, equivalent classes of the Sylow subgroups, number of sylow p-subgroups.

2.1.1. Objective. The objective of these contents is to provide some important results to the reader like:
(1) Conjugate of an element.

(i1) Sylow First Theorem.

(ii1) Sylow Second Theorem.

(iv) Sylow Third Theorem.

(v) Survey of groups.

2.2. Conjugate of an element. Let G be any group and a, b € G, then a is called conjugate of b if there

exists an element x € G such that a = x ' bx.
2.2.1. Exercise. The relation of conjugacy is an equivalence relation.

2.2.2. Equivalence Class. Let a € G, then equivalence class or conjugate class of ‘a’ is given by: Cl(a) =
{x €G:a~x}=Setofall conjugates of ‘@’ = {g'ag: g €G }
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Remark. Since the conjugacy relation ‘~’ is an equivalence relation on G, so G is union of all conjugate

classes and any two conjugate class are either disjoint or identical. Keeping this in mind, we can say that

o(G) = ZO(CI(CI)), where the sum runs over element a which is taken one each from each conjugate

a

class. Clearly, CI (e) = {e} and CI (a) = CI (b) iff a ~ b.

o(G)
O(N(a))

2.2.3. Class Equation. Let G be a finite group and Z(G) denote the centre of G. Then, the equation

o(G) = 0(Z(G)) + Y %

where ‘a’ ranges over each conjugate class containing more than one element, is called class-equation.

Result. If G is a finite group and @ € G, then o(Cl(a)) =

Another forms of class equation.

W oG-y 29

—————, where the sum runs over ‘a’ taken one from each conjugate class.
= o(N(a))

(i) o(G) = o(Z(G)) + Z ﬂ, where the sum runs over ‘a’ taken one from each conjugate
agZ(G) O(N(a))

class.

i) o(G) =oz@G)+ Y 29

, where the sum runs over ‘a’ taken one from each conjugate
N(a) # G O(N(a))

class.

@iv) o(G) = o(Z(G)) + Z [G : N(a)], where the sum runs over ‘a’ taken one from each conjugate
aeZ(G)

class.
Results.
1. If o(G) = p" for some prime p then Z(G) # {e} that is, Z(G) is non-trivial, that is, o(Z(G))>1.
2. If o(G) = p* for some prime p, then G is abelian.
3. A group of order p° may not be abelian e.g. Qg whose order is 2°.
4. If G is a non-abelian group of order p® for some prime p, then o (Z(G)) =p.
5. If Z is the centre of a group G such that G/Z is cyclic, then show that G is abelian.

2.3. Commutator. Let G be any multiplicative group. The commutator of two elements x and y of G is

the element x 'y 'xy € G. We denote it by [x, y].

2.3.1. Proposition. G is abelian iff [x, y]=e V x,y € G.
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Proof. If G is abelian then

[x,y] = x_ly _lxy =X _lxy _ly =ee=e.
Conversely, let [x,y]=e V x,y € G.
= x_ly_lxy =e
= o) () =e
= xy=yxV x,yeq. = G is abelian.
2.3.2. Proposition. a € Z(G) iff [a,x]=e V x € G.
Proof. Let a € Z(G) = centre of G
Then [a,x]=a 'x'ax=a"'x'xa=a'a=e[Since a € Z(G)]
Conversely. [a,x]=e V x € G
= a'xlax=e = ax=xa ¥V € G = a € Z(G).

2.3.3. Commutator Element. The element y of G is said to be a commutator element of G if 3 a, b €
G such that [a, b] = y that is, a”' b”'ab = y. e.g. Identity element is always a commutator element.

Let us find the commutator elements of S5. We know that

Ss={1,(12), (13), (23), (123), (132)}
Now, [/, (12)] =1, Similarly [/, x]=1V x € S;.
Now, [(12),11=1,[(12),(12)]=1

[(12),(13)] = (123),  [(12), (23)] = (132)
[(12), (123)=(132), [(12), (132)]=(123)

So, (123) and (132) are also commutator elements of S3. We can show that 7, (123), and (132) are the
only commutator elements of Ss.

2.3.4. Derived Subgroup. The subgroup of G generated by all the commutators of G is called the
derived subgroup of G. We denote it by 8(G) and G

that is, 3(G) =G =<[x,y]:x,ye G>
For example, let G = 53, then
3(S3)=<[x,y] :x,y € S3>=<1,(123), (132)> = {I, (123), (132)}.
d(G) is also known as first derived subgroup.
2.3.5. Exercises.

1) Derived subgroup of a group G is a normal subgroup of G, that is, 5(G) A G.

i) A group G is abelian if and only if G' =<e>.
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2.3.6. n™ Derived Subgroup. Let G be a group, for every non-negative integer n, define G

inductively as follows:
G'=G. G :(G(n))'

the commutator subgroup of G . The G is called n™ commutator subgroup or n™ derived subgroup
of G.

G" "V =(G") =[G”, G"]=<[x,y]:x,y € G >

2.4. Sylow Theorems

2.4.1. Sylow’s First Theorem. Let p be a prime number such that p’”/ o(G), where m is a positive

integer. Then G has a subgroup of order p™.
Proof. We shall prove the Theorem by induction on o(G).
If o(G) = 1, then Theorem is trivially true.

As our induction hypothesis, we assume that Theorem is true for all groups of order less than order of G.
In other words, we have assumed that if G’ is a group such that o(G") < o(G) and

P / o(G"), for some integer k, then G’ has a subgroup of order p"*.
We shall prove the result for G. For this we consider two cases separately.
Case L. If p"divides the order of a proper subgroup, say H, of G that is, p” / o(H) and

o(H) < o(G). Then by induction hypothesis on H, we obtain that H (and hence G) has a subgroup of

order p".

Case II. Let p" does not divide the order of any proper subgroup of G that is, p” X o(H ), for all proper
subgroup H of G.

We know that the class-equation for G is o(G) = o(Z(G)) + Z _oG)
viosc 0(N(a))

If N(a)# G, then N(a) is a proper subgroup of G, and so by hypothesis of this case,

(1)

p" Xo(N(a))

Now, o(G) = —29)_ o(N(a)

o(N(a))

Given that p" / o(G), and if p” X o(N(a)) then by above expression, we obtain

p/ 0(0]5]?2)) , whenever N(a) # G.
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N p/ 3 o(G)

N(a)%G o(N(a))

B o(G)
Also, p/o(G), so p/ |:0(G) N((;tGO(N(a)):| = plo(Z(G)) [By(1)]

As Z(G) is abelian, so by Cauchy Theorem for finite abelian group, there exists an element a(#e) €

Z(G) such that a” =e. Let K be the cyclic subgroup of G generated by a that is,
K=<a>={a,a’,a’,..,a"} and o(K) = p. Now a € Z(G) implies that K < ZG) and we know that a
subgroup of Z(G) is always a normal subgroup of G and so KA G and so G/K is well-defined.

Now, o(G/K)= % = ? <o(G)

So, we can apply the induction hypothesis on G/K .

Now, p” /o(G) = p’"_l/O(G)
p

= pm—l /O(G/K)
By induction hypothesis on G/K for the divisor p"™', G/K must have a subgroup, say, T of order
pmJ , that iS, 0(]’) — pmfl .

Now, we know that every subgroup of G/K is of the form L/K where L is a subgroup of G containing

K. So, we must have

T= L/K,where L is a subgroup of G containing K.

= oD =o(L/K)= %

= o) =o(D.oK)=p"p=p"
Thus G has a subgroup L of order p™.
Remark. Sylow’s first Theorem can also be stated in following ways:
(i) If any power of prime divides the order of a group G, then G has a subgroup of order equal
to that power of prime.
(i) If o(G)=p"q , where p is a prime number and g is a positive integer such that gcd(p,q)=1,

then G has subgroups of orders p, p*,..., p*.
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Example of Sylow’s first Theorem.

2.4.2. Example. Let G be a group such that o(G)= 9000 . By Sylow first Theorem, find the order of

subgroups which G certainly contains.
Solution. First we do the prime factorization of 9000 and obtain
o(G) =2°.3%. 57
Here, 2, 3 and 5 are prime numbers so by Sylow’s first Theorem, G contains the subgroups of order 2',
2°,2°,3', 3%, 5", 5 that is, 2, 4, 8, 3,9, 5, 25.

However, by Sylow’s first Theorem, nothing can be said about the existence of subgroups of order 6, 15,
10 etc. as they are not powers of a prime.

2.4.3. Sylow p-subgroup. Let p be a prime number such that p* divides o(G) and p"*' does not divide
o(G) . Then a subgroup of order p” is called a Sylow p-subgroup of G.

-OR-
If o(G) = p"q where p is a prime number and ged(p, ¢) = 1, then a subgroup of order p* is called a
Sylow p-subgroup of G.

-OR-
Sylow p -subgroup of a group G is a subgroup whose order is p* where k is the largest power of p such
that p* divides o(G).

-OR-

A subgroup of G is called a Sylow p-subgroup if its order is equal to the maximum power of p occurring
in the order of the group.

2.4.4. Example. Find the order of different Sylow p—subgroups for G where

(i) o(G) =45 (i) o(G) =1125.

Solution. (i) o(G) = 45 = 3%5",

Then, G has Sylow 3—subgroups and Sylow 5—subgroups. A sylow 3—subgroup is that whose order is 37,
that is, 9 and a sylow 5-subgroup is that whose order is 5' = 5.

(ii) o(G) = 1125 =35,

In this case, a sylow 3-subgroup is that whose order is 9 and a sylow 5-subgroup is that whose order is
125.

Note. By above example, it is clear that in different groups Sylow p-subgroup may have different orders
for some fixed prime p.

2.4.5. Example. If H is a Sylow p-subgroup of G, then prove that x™'Hx is also a sylow p-subgroup of
G forany xeG.
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Solution. Let p"/o(G) and p"*' X o(G).

As H is a Sylow p -subgroup of G, we have o(H) = p".

Let H= {hl,hz,h3,...,hpn} , then for any x € G, we have
x U He={x"hx , x"'hx,.., x_lhp,,x} (1)

First we prove that x™'Hx is a subgroup of G. For this let x '4,x and x'h,x be any two arbitrary

element.

Then (x™' A, x) (x " hyx)" = x " hxxh'(x")!
= x"'hh;'x e x'Hx [Since hh'eH asH isa subgroup]

Thus, x'Hx is a subgroup.
Secondly, we prove that o(x™'Hx) = o(H) .
For this it is sufficient to prove that all elements in (1) are distinct.
Let if, possible x 'hx=x"hx , where h #h,

= xx e = o !

= h, = h,, which is a contradiction.
Hence, o(x™'Hx)=o0(H), that is, o(x 'Hx) = p" .

Thus, x™'Hx is a Sylow p-subgroup of G.

2.4.6. p group. Let p be a prime number. A group G is said to be a p — group if order of every element of
G is some power of p. For example,

O, ={l,-1,i,—i,j,—j, k,—k}
The group of quaternions is a 2—group because
o1)=2°, o(-1)=2", o(i,~i, j,— j, k,~k)=2",
that is, order of every element of Qg is a some power of 2.
2.4.7. Theorem. A finite group G is a p-group iff o(G) = p" for some integer n.
Proof. Suppose G is a p-group. We shall prove that o(G) = p" for some integer n>1.
For this, it is sufficient to prove that p is the only prime dividing o(G).

Let, if possible, g(# p) be any other prime such that g/o(G). By Cauchy Theorem, there exists an
element a(# e) € G such that o(a)=g¢q
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Since a € G and G is a p-group, so o(a) = p" forsomer > 1. Thus p" =g¢q
= p/q , which is a contradiction since a prime can never divide other prime.
Hence p is the only prime dividing o(G), so o(G) = p" for some n.
Conversely, Suppose o(G) =p". Let a € G be any element, then o(a)/o(G)
= o(a)/p” = o(a)=p" for some r.
Thus order of every element of G is some power of p. Hence G is a p-group.

Remark. Now we introduce the concept of Double Cosets which will be very useful in proving the
Sylow’s second and third Theorem.

2.4.8. Double Coset. Let H and K be two subgroups of a group G and x € G be any element. Then the
set

HxK={hxk : he H , ke K} is called a double coset.

2.4.9. Double Coset Decomposition. If 4 and K are two subgroups of a group G then prove that

(i) any two double cosets are either disjoint or identical

(i1) G is the union of all distinct double cosets that is, G = U H x K where union runs over x taken one
xeG

from each double coset.

Proof. We define a relation ~ for any two elements x and y of G as x ~ y iff x = hyk for some
heH and keKk.

First we prove that this relation is an equivalence relation.
(1) Reflexivity: Clearly x ~x asx = e x e, where e H, ec K.
(i) Symmetry: Letx ~y = x=hy k forsome he H, ke K
= h'xk'=h"hykk'
= y=h"'xk"' where h'eH ,k'ek
= y~X.
(ii1) Transitivity: Let x ~y and y~z
= x=hyk and y="h'zk" for some h,h'e H and k,k'e K
=  x= hh'zk'k
Clearly hh' e Hand k'k € K , as H and K are subgroups and so x ~ z .

Hence ~ is an equivalence relation of G, so this relation partitions the group G into equivalence classes
and so we can write



Abstract Algebra 15

G= ]l (1)

xeG

where union runs over x taken one from each conjugate class.
Then,
c(x)={yeG : y~x}
={yeG : y=hxk forsome he H ,ke K}
={hxk : heH ,keK}|=HxK
= c(x) =HxK (2)

Thus equivalence class of any element comes out to be a double coset. Also we know that any two
equivalence classes are either disjoint or identical. Thus we obtain that any two double cosets are either
disjoint or identical, which proves (i).

Using (2) in (1), we obtain
G=|JHxK

xeG

where union runs over x taken one from each double coset which proves (ii).
This is called double coset decomposition of G by H and K.
2.4.10. Lemma. Let A and K be finite subgroups of a group G and x € G then

o(H) o(K)

ot x K) = oHNx K x™")’

Proof. We define a mapping ¢ : H x K - H x K x™' by setting
P(hxk) = hxkx™" for he H and ke K.
We prove that ¢ is well-defined, one-one and onto.
(1) ¢ 1s well-defined: Let hxk, = h,xk,
= hxk,x™ = hyxk,x™
= o(hxk,) = g(h,xk,)
So, ¢ is well-defined.
(i1) ¢ is one-one. Let  @(hxk,) = §(h,xk,)
= hxk,x™ = hyxk,x”'

= hxk, = h,xk,
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So, ¢ is one-one.

(iii) ¢ is onto. Let hxkx™' € HxKx ' be any element then clearly hxk € HxK and
P(hxk) = hxkx™ = hxk is pre-image of hxkx™' under ¢.

So, ¢ is onto.

1

Hence, there exists a one-to-one correspondence between H x K and HxK x~ and so their orders must

be same that is,
o(HxK) = o(HxKx™") (1)

Now we know that if K is a subgroup of G then xKx ' is also a subgroup of G of the same order, that is,

o(K) = o(xKx™").
Also, we know a result that if 4 and B are two finite subgroups of G, then
o) 2D 0(B)
o(ANB)

Putting 4 = H and B = xKx~' in above, we obtain

o(H) o(xKx™")

o(HxKx™") = —
o(HNxKx™)
- o(HxKx™) = % [Since o(K) = o(xKx™)] (2)
By (1) and (2), we obtain
o(Hk ) =2 oK)
o(HNxKx™)

2.4.11. Sylow’s Second Theorem. Any two Sylow p-subgroups of a finite group G are conjugates in G.

Proof. Let H and K be two Sylow p-subgroups of G. Let n be the highest power of p such that p” / o(G)
that is,

P Xo(G) (1)
Then, o(H)=0(K)=p"
We have to show that / and K are conjugate in G that is, /= xKx~' for some xe G
Let, if possible this is false that is, H # xKx ™' for all xe G.
= H nxKx™' is a subgroup of H which is properly contained in H

that is, HnxKx' G H )
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Now, by Lagrange’s Theorem,
o(H N xKx™")o(H)=p"
= o(H nxKx")=p" for some m<n.

But in view of (2) clearly m#n,so o(H nxKx')=p", where m < n.

By above Lemma, we have

H) o(K "p"
O(HXK): 0( )0( ?1 — p.p :p2n—m
oHNxKx") p"
_ ntl+n-m-1 _ __n+l __n-m-1
=p =p".
= p"" divides o(HxK)

= p""' divides ) o(HxK) (3)

xeG

Now, by double coset decomposition, we know that

G= U H x K , where H x K are mutually disjoint.

xeG

= 0o(G)= D o(HxK) 4)

xeG
By (3) and (4), we have p""' divides o(G), which is a contradiction to (1).

Hence H= xKx' for some x € G that is, H and K are conjugates in G.

2.4.12. Lemma. Let P be a Sylow p -subgroup of a group G, then the number 7, of Sylow p-subgroups

of G is equal to ﬂ.
o(N(P))
Proof. We know that o(cl(P)) = % (1)
o

Now, ¢l (P) contains all subgroups which are conjugate to P.

But by Sylow second Theorem, all sylow p-subgroups are conjugate to each other and hence ¢/ (P)

contains all Sylow p-subgroups of G.

Hence, number of Sylow p-subgroups = n, = o(c/(P)) (2)
By (1) and (2), n,= G
o(N(P))

2.4.13. Sylow’s Third Theorem. The number n, of Sylow p-subgroups of a finite group G is given by
n, =1+ kp such that 1+ ip /o(G) , and k is a non-negative integer.
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Proof. Let P be a Sylow p-subgroup of G.
Let n be the highest power of p such that p” / o(G) thatis, p""' X o(G).
By double coset decomposition of G, we know that

G= U H x K , where union runs over x taken one from each double coset.
xeG

= o(G) = Z o(HxK') where sum runs over x taken one from each double coset.
xeG

Taking H= K = P in above, we get
o(G) = D" o(PxP)

xeG

= o(G)= Y o(PxP)+ Y. o(PxP) (1)

xeN(P) xgN(P)
We take up two sums in (1) one by one.

Ifx € N(P)then xPx' =P = xP = Px

= PxP= PPx
= PxP= Px [Since P is a subgroup ,so PP =P |
= |J pxP=J Px )

xeN(P) xeN(P)

Now P is a subgroup of N(P) and so Px is a right coset of P in N(P). Further we know that union of all
distinct right cosets of a subgroup is equal to the group, so we get

U Px=nN(P)
xeN(P)
Using this in (2), we get
U PxP=nN(P)
xeN(P)
= Y. o(PxP) = o(N(P)) (3)
xeN(P)

Again, if x ¢ N(P) then xPx™' # P
= P xPx™" is a subgroup of P properly contained in P,
that is, o(PNxPx")<o(P)=p"
Also by Lagrange’s Theorem
o(PNxPx™ )/O(P) =p"
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= o(PnxPx™")= p" withm <n.
Now we know that,

O(P) O(P) _ p”.p” 2n—m

(PxP) o(PNxPx™") p" P
— pn+1+n—m—1: pn+1'pn—m—1
= p"* divides o(P x P) whenever x ¢ N(P)
that is, P Z o(PxP)
xgN(P)
= Z o(PxP)= p""' t for some integer ¢ 4)
xeN(P)
Using (3) and (4) in (1), we obtain
o(G) = o(N(P)) + p"" 1
n+l
= Q) _y, Pt (5)
o(N(P)) o(N(P))

As N(P) is a subgroup of G, by Lagrange’s Theorem, o(N(P)) divides o(G) and so

is an integer.

n+l

_p

So, by (5), we obtain that
o(N(P

1S an integer.

Now, P is a subgroup of N(P), so by Lagrange’s Theorem
o(P)/o(N(P)) = p'[o(N(P)

= o(N(P))= p" r for some integer r.

n+l n+l
Pt _pt_ pi is an integer.
o(N(P)) p'r r

Thus, we obtain that

n+l

= r is an integer, say k = _p kp
r o(N(P))
Using this in (5), we have

o(G) _

+ K
o(N(P)) v

By above Lemma, the number 7, of Sylow p-subgroups is given by n,=

o(G)
o(N(P))

o(G)
o(N(P))
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Hence, n = _o6) _ 1+kp
" o(N(P))

Finally, o(G) = o(N(P)).(1 + kp) implies that 1+ kp/o(G)
Thus number of Sylow p-subgroups is 1+ kp such that 1+ kp/o(G) .

2.4.14. Corollary. Show that a Sylow p-subgroup of a finite group G is unique iff it is normal.

Proof. Condition is necessary:

Suppose H be a unique Sylow p-subgroup of G. Let p” / o(G) and p""' X o(G), then

Clearly, o(H) = p"
Let x € G be any arbitrary element, then we know that x'Hx is also a Sylow p-subgroup.
Since H is the only Sylow p-subgroup of G, therefore
x'Hx=H forall xeG
= Hx=xH forall xeG
= H is a normal subgroup of G.
Condition is sufficient :

Let H be a Sylow p-subgroup of G such that HA G. We shall prove that H is unique. Suppose K be any
other Sylow p -subgroup of G. Then, by Sylow second Theorem, A and K must be conjugate in G that is,
K= x"'"Hx for some xe G

= K= x"xH [Since HA G]
= K=H
Hence H is unique Sylow p-subgroup of G.
2.4.15. Simple Group. A simple group is one having no proper normal subgroup.

Remark. To show that a finite group G of certain order is not simple, obtain a unique Sylow p -
subgroup G for some prime p. Then, it becomes normal and obviously H is proper, which shows that G
is not simple.

2.4.16. Example. Show that a group of order 28 is not simple.
-OR-
Let o(G) = 28, then show that group G has a normal subgroup of order 7.

Solution. We have o(G) = 28 = 2*7'. By Sylow first Theorem, G has Sylow 2 — subgroups each of
order 4 and Sylow 7 — subgroups each of order 7.

By Sylow third Theorem, the number 77 of Sylow 7 — subgroups is given by 1 + 7k such that
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1+7k/o(G) =  1+7k/28
= 1+7k/2%7
= 1+7k/4 [Since (1 + 7k, 7) = 1]
= k=0

Thus, n,=1 that is, there is unique Sylow 7 -subgroup say H and o(H) =7

But we know that “a Sylow p -subgroup is unique iff it is normal”.
Thus H is a normal subgroup of order 7. Obviously H is proper. Hence G is not simple.
2.4.17. Exercise.
1. Let G be a group of order 5°.7.11, then G has how many
(i) Sylow 5—subgroups
(ii) Sylow 7—subgroups
@iii)  Sylow 11-subgroups.
Check whether G is simple or not.
2. Show that a group of order 40 is not simple.
-OR-
Show that a group of order 40 has a normal subgroup of order 5.
3. Show that a group of order 20499 is not simple.
-OR-
Show that a group of order 20499 has a normal subgroup of order 11.
4. Show that a group of order 56 is not simple.

2.4.18. Proposition. Let G be a finite group such that o(G) = p", where p is a prime. Prove that any

subgroup of order p"~' is a normal subgroup of G.

Proof. We shall prove the result by induction on 7.

n—1

For n =1, G is a group of order p and the only subgroup of order p" that is, of order

1

p' "' =p° =11is {e}. The identity subgroup {e} is obviously a normal subgroup of G. Thus
the result is true for n = 1.
As our induction hypothesis, we assume that result is true for all groups of order p™, where m < n.

n—1

Let H be a subgroup of G of order p" . We shall prove that H is normal in G.

Now, H < N(H) <G and so by Lagrange’s Theorem,
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o(H)/o(N(H)) ~ and  o(N(H))/o(G)

that is, " Jo(N(H)) and  o(N(H))/p"
= o(N(H))=p"" or p"
If o(N(H)) = p", then o(N(H))=0(G) = NH)=G
= H is normal in G, which is what we want to prove.

n-1

Now, we finish our proof by showing that o(N(H)) = p" is impossible.

Let, if possible, o(N(H)) = p" ', thenas o(H) = p"" and H c N(H), we get

H=N(H) (1)
Now, o(G) = p", we know by class equation, that o(Z(G)) > 1 (2)
By Lagrange’s Theorem, o(Z(G))/o(G) = p" = o(Z(G)=p’, 0<s<n

But if s = 0, then 0o(Z(G)) = 1, which is a contradiction by (1).
Hence, oZ(G)=p',s>0 = p/o(Z(G))
So, by Cauchy Theorem for finite groups, there exists an element a(# e¢) € Z(G) such that o(a)=p.

Let K be the cyclic subgroup of G generated by ‘a’ that is,

As ‘a’ belongs to centre, every element x € G commutes with a and all its powers, so
Kx=xK forallxeG
= K is a normal subgroup of G.

Hence G/K is well-defined and

0(G/K)=@=p—=p”"l, where n—1<n
o(K)

Also, o(H/K) = o) _p" _ p
oK) p
So, by induction hypothesis, H/K must be a normal subgroup of G/K
= H is a normal subgroup of G = NH)=G 3)
By (1) and (3) we obtain, H = G, which is absurd.
Hence o(H) = p"™' is not possible.

2.4.19. Example. Show that no group of order 108 is simple.
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-OR-

Let G be a group of order 108. Show that G has a normal subgroup of order 27 or 9.

Solution. We have o(G) = 108 = 22.3°. By Sylow third Theorem, the number n, of Sylow 3—subgroups
is given by 1 + 3k such that

1+3k/0(G) =23 = 1+3k/4 [Since (1+3k,3%)=1]
= k=0orl
= n,=1+3.0o0rl1+3.1
= n,=1or4

We consider the two cases separately.

Case (i). n, = 1, that is, G has a unique Sylow 3 -subgroup, say H. Since H is unique, it must be normal

and o(H) = 3° =27. Thus G has a normal subgroup of order 27 in this case and hence G is not simple.

Case (ii). n, = 4, that is, G has four Sylow 3 — subgroups each of order 27. Let /{ and K be any two
distinct sylow 3 — subgroups. We claim that o(H " K)=9 and H N K is a normal subgroup of G.

Clearly, H " K < H, and so by Lagrange’s Theorem.
o(HNK)/o(H)=27
= o(HNK)=1or3or9or27.

If o(H " K) = 27 then since o(H) = o(K) = 27, we obtain H = K, which is a contradiction. Hence
o(HNK)=+#27.

o(H)o(K) _ 27.27

If ol HNK)=1or3then o(HK) =
o(HNK) lor3

>108 = 0(G), which is not possible.

Hence o(H nK) #1,3 and so o(H N K) =9.

We now show that H m K is normal in G. For this we shall prove that N(H N K) = G.

1

Now, we know a that, if o(H) = p"~ and o(G) = p" then H is a normal subgroup of G.

Using this, we conclude that H N K is a normal subgroup of both H and K as o(H N K) = 3% and o(H)
= o(K) = 3°.
Let x € H be any element, then
(HNK)x=x(HNK) [Since (HNK) A H]
= xe N(HNK),normalizer of H " K .

—  HcNHNK)
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Similarly, K c N(HNK) = HK c N(HNK)

o(H)o(K) _ 27.27 _

= o(N(HﬁK))Zo(HK)Z o(H ~K) 5

81

= o(N(HNK)) > 81 (1)
On the other hand, N(H N K) is a subgroup of G so by Lagrange’s Theorem
o(N(H nK))/o(G),
that is, o(N(H N K))/108 2)
Both (1) and (2) are possible only when
o(N(HNK)) =108 = o(G)
= o(N(H NK)) =0o(G)
= NHNK)=G
= H N K isnormal in G. [Since NH)=Gifft H A G ]

Hence G is not simple.

2.4.20. Theorem. Let o(G) = pg, where p and ¢ are distinct primes, p < ¢ and p X ¢ —1, then show that
G is cyclic.

Proof. By Sylow third Theorem, the number n, of Sylow p-subgroups is given by 1 + kp such that
I+kp/o(G) = pq

= 1+kp/q [Since (1+kp, p)=1]

= I+kp=1lorl+kp=gq [Since ¢ is a prime]
If1+kp=gq,then kp=q—1

= p/q—1, which is a contradiction.

Hence n, =1+kp =1. Thus G has a unique Sylow p-subgroup, say, H of order p. Also since H is unique,

it must be normal. Thus we obtained
o(H)y=p and HAG (1)
Again, by Sylow third Theorem, the number n_ of Sylow g-subgroups is given by 1+k'q such that
1+k'q/o(G) = pq = 1+k'q/p [Since (1+£k'g , q) = 1]
= l+k'g=1 or 1+k'g=p

If 1+k'q = p then we get ¢ < p, which is a contradiction.
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Hencen, =1+k'q=1. Thus G has a unique Sylow g-subgroup, say, K of order g. Also since K is unique

1t must be normal. Thus we obtained
o(K)=q and K AG (2)

Now, we know that a group of prime order is always cyclic and here H and K both are of prime orders,
so they must be cyclic.

Let H=<a>and K =< b > then o(H) = o(a) and o(K) = o(b) 3)
Using (1) and (2) in (3), we get
o(a)y=pando(b)=¢q (4)
Now, we prove that H " K = {e}. Let x€e H " K be any element.
Then xeH and xeK = o(x)/o(H) and o(x)/o(K)
= o(x)/p and o(x)/q
= o(®)/ged(p,q)
= o(x)=1
= x=eforall xe HNK
= HnNK ={e} (5)
Now, we prove that ab = ba.
For this consider the element a~'b"'ab. We see that
a'bab = a'(b'ab)e H ,
because H A G, sothat b'abe H andalso a' € H .
Again, a'b'ab = (a'b'a)b e K , because K A G,sothat a'b'ac K andalso beK .
Hence, we get a'b'ab € HNK
= a'blab =e [By (5)]
= baa”'b”'ab=ba.e
= ab=ba
Lastly, by (3), we see that gcd(o(a),0(b)) = ged(p,q) =1
We know that, if a,b € G such that ab = ba and (o(a),o0(b)) = 1 then o(ab) = o(a).o(b) .
Therefore, o(ab) =o(a) o(b) = pq =0(G)
= G contains an element ab of order pg

= G=<ab>
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= G is cyclic.
Remark. Due to the above result, we can say that groups of order 15, 33, 35, 65, 51 etc. are cyclic.
2.4.21. Exercise.
1. Show that a group of order 15 always cyclic.
2. Let G be a group of order 231, then show that
(1) G is not simple
(i1) Sylow 11 -subgroup of G is contained in the centre of G.
2.4.22. Theorem. Let P be a Sylow p-subgroup of G and let xe N(P) be an element such that
o(x)=p" . Then show that xe P.

Proof. Since P is given to be a Sylow p-subgroup of G and let
p"/o(G) but p""' Xo(G) ©)
Then, clearly o(P)=p".
We know that P A N(P),so N(P)/P is well-defined.
As xe N(P), Pxe N(P)/P and (Px)" =Px" =Pe [Since o(x) = p']
= (Px)” = P=Identity of N(P)/P
= o(Px)/p’ = o(Px)=p’ for some s >0
Ifs=0, then o(Px)=p°=p’°=1 = Px = P
= x € P, which is required to prove.

Now we finish the proof by showing that s > 0 is impossible.

Let, if possible, s > 0 and let H be the cyclic subgroup of N(P)/P generated by Px that is,

H = < Px> then o(H)=o0(Px) = p’ )

Since H is a subgroup of N(P)/P, it must be of the form H=H /P where H is a subgroup of N(P)

containing P.

Now, o(H)=p' [By (2)]
=  o(H/P)=p’
o) _ s

= = o(H)=p"" ,s5>0
o(P) D (H)=p

As H is a subgroup of N(P) and N(P) is a subgroup of G, so H is a subgroup of G and by Lagrange’s
Theorem, o(H)/o(G)
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= p""/o(G), which is a contradiction by (1), as s > 0.

Hence s > 0 is not possible and in case s = 0, we have already shown that x € P.
2.5.Structure of Finite Abelian Groups.

If a group is direct product of some of its subgroups, then the structure of the group can be determined
by determining the structures of subgroups appearing in the direct product. This simplifies our work as
determination of structure of a big group is broken into determination of structures of comparatively
smaller groups.

Let us call the subgroups appearing in the direct product as “building blocks”. Now the procedure will
be more simple if these building blocks are taken to be cyclic subgroups since cyclic groups are always
easy to deal with.

Now a natural question arise “Is it always possible to write a group as the direct product of its cyclic
subgroups”.

The answer is no, in general. However, luckily, it is possible for finite abelian groups, due to
Fundamental Structure Theorem for finite abelian groups.

Before the formal statement of this Theorem, let us study another Theorem in this regard.
2.5.1. Theorem. Prove that a finite abelian group is direct product of its Sylow subgroups.

n

Proof. Let G be a finite abelian group and o(G) = p" py*...p.", where p,, p,,..., p, are distinct primes
and n, >1 for all i. Since internal direct product is always isomorphic to external direct product, we shall

prove that G is internal direct product of its Sylow subgroups.

Let H,,H,,...,H, be the Sylow subgroups of G such that

o(H))=p" , o(H,)=py ..., 0(H,)=p;
To show that G is internal direct product of H,H,,..., H, we have to prove following three things.

(1) Each H; is normal in G.
(i1) HNHH,. .H_H

i---H, ={e} forany i.
(i) G=HH,.H,
Let us prove all these one by one.
(1) Since G is abelian, so its every subgroup is normal. Hence each H; is normal in G.

(1) LetxeH nHH,.H _ H,..H, beany arbitrary element.

Then xe H, and xe H H,..H, H,

i+1°

H,
=  x=hh.h_h

i+l

h, where h; e H, forall j=i
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As  h eH, and o(H,)=p",s0 (h) =efor j#i (1)

n

Now, let t=p," p,”...p, "' p,.,""...p," , then for j #i, we have

I ) " remaining factors
(hj)t — (hj )P1 'y 2epnt Pt ey |:(h] )P/ :| [Sincep;’j appears in t:|
— [e] remaining factors  _ e.
Thus, h' =k =..=h' =h =..=h =e )
Now, x'= (Wh..n h, ..h)
= WH h K
=e.
n n n -1 n +l1 n.
=  o(x)/t = o(x)/p1 "D, D P D, 3)
Since xe H, = o(x)/o(H,)
= o(x)/p" = o(x)=p/",0<m,<n, 4

Putting value of (4) in (3), we get

+1

ml/ n.on, n -1 n, n -0
Pi'/ P Py Py’ Pin P = m; =9,

since p; does not appear on R.H.S.. So by (4), we have o(x)=p/* =p’ =1 = x=e

Thus, H, "H H,..H,_H

i+1°

..H_={e} for any i, which proves (i1).

(iii) We know that a result that

If 4 and B are two finite subgroups then o(A4B) = o(4) o(B) (5)
o(ANB)
Using this result for 4 = H, and B = H,H,...H , we get
o(H,H,..H )= o(H))o(H,H,...H,) ©6)
o(H "H,H,..H,)
Taking i = 1 in (ii), proved above, we have
H NH,H,.H ={e} = o(H N"H,H,..H )=1
Using this in (6)
o(H H,..H.) = o(H,)o(H,H,...H ) = 2d1) oUT,) o, H,..H,) (7)
o(H, "H,H,..H)
Now, H,"nHH,.H c H, nHHH, . H, ={e} [By (ii) for i = 2]

= H,nHH,..H, ={e} = o(H,nH,H,..H )=1
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Using this in (7), we get
o(HH,.H)=0(H)o(H,)o(HH,.H,)
Continuing in this way, we obtain
o(HH,..H)=0(H).0o(H,)..0o(H)=p'py..... p =0(G)
= G= HH,......H, , which proves (ii1).
Thus G is the internal direct product of its Sylow subgroups.
2.6. SURVEY OF GROUPS.

In our previous work we have obtained a complete description of number and nature of a finite abelian
group. Unfortunately, there is no such general result for finite non-abelian groups. The Sylow Theorems
and Cauchy Theorem (which is itself is a particular case of Sylow first Theorem) are a powerful tool in
finding the number and nature of finite non-abelian groups.

However, to keep our study within the scope of the book, we shall study the groups of orders 6 and 8
only.

2.6.1. Example. Find all non-abelian groups of order 6.
Solution. Let G be a non-abelian group such that o(G)= 6. Now 3 and 2 are prime numbers dividing

0o(G) so by Cauchy Theorem, there exist two non-identity element ¢ and b in G such that
o(a)=3 and o(b)=2.

Let H =< a > be the cyclic subgroup of G generated by a that is,
H={e,a,a’} and o(H) = 3.
o(G) _6_

o(H) 3

Now, index of Hin G=

Since every subgroup of index 2 is normal, H is normal in G.

If be H, then o(b)/o(H) = 2/3, which is a contradiction. Hence b ¢ H

As index of H in G is 2, so there are two distinct right coset of H in G and clearly these are H and Hb.
Then G=H U Hb= {e,a,a’,b,ab,a’b} .

Since H A G, b'abe H = {e,a,a’} = blab=e oraord’
If b'ab=e,then bb 'abb™ =beb™' that is, a = e, a contradiction.
If 5™'ab =a, then ab = ba = G is abelian, a contradiction.
So, blab=a’=a"".
Hence there is only one non-abelian group of order 6 given by
G = {e, a, a’, b, ab, a’b} where a’ =b>=e¢ and b 'ab=a""'

2.6.2. Exercise.
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Find all non-isomorphic abelian groups of order 6.

. Find all non-isomorphic groups of order 6.

2
3.
4

Find all non-isomorphic non-abelian groups of order 8.

. Find all non-isomorphic groups of order 8.

2.7. Check Your Progress.

1. For any group G, G/G' is always abelian.

2.If G is a group, then G /G *" is always abelian.

3. Show that a group of order 30 is not simple.

2.8. Summary.

In this chapter, we discussed about commutator elements, Sylow’s theorems which is an important part
of group theory. Also observed that for a finite group and a prime p dividing its order, if p” is the largest

power of p dividing order of group, then the group must have subgroups of orders p’, p’, . . ., p"

m

However, we have no idea about the number of subgroups of orders pi fori=1 2, ... m—1,butfori=
0,1t is 1 and for i = m, it can be decided by Sylow’s third theorem.
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3.1. Introduction. This chapter contains definition of subnormal series and its examples. Definition and
important properties related to that of a solvable group are discussed. One important result in this
direction is that S, is not solvable for n > 4. Also it is proved that every p-group is solvable.

3.1.1. Objective. The objective of these contents is to provide some important results to the reader like:
(1) Every subgroup of a solvable group is solvable.

(i1) Every factor group of a solvable group is solvable.

(i11) Converse result of these results.

(iv) Every p-group is solvable.

(v) S, is not solvable for n > 4.

(vi) A group is solvable iff nth derived subgroup is solvable.

3.1.2. Keywords. Subnormal Series, Solvable Groups, Abelian Groups, Order of Group, Quotient
Groups.
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3.2. Subnormal Series. A sequence of subgroups

G=G,0G, 2G,2..0G, =<e>

of a group G is called a subnormal series of G if G,,; A G, for 0<i<r—1.
3.2.1. Refinement of a Series. Let G be a group and

G=G,0G, 2G,2..0G, =<e>
be a subnormal series for G. A subnormal series

G=G(; QG QG; Q...QGS' =<e>
is called a refinement of the former series if {GO,G],GQ,...,GF} C {G(;,G{,G;,...,G;} )

The refinement is said to be a proper refinement if {GO,GI,GZ,...,GF} C{Gé,G{,G;,...,G;} . For

example, let G = S3, then G =G, © G, =<I > is a subnormal series for G. Now consider the series

G=G,0G =4,25G,=<I>,

We note that 4; AS; and </ > A A4, . So, this series is also a subnormal series for G. Also,

{Sy,<I>} {8, 4,,<1>}.

Hence this series is a proper refinement of the last one.

3.2.2. Length of a Series.Consider a subnormal series

G=G,0G, 2G,2..0G,. =<e> (1)

Then, it is possible for some i, G; = Gis; in (1). The number of distinct members of (1) different from (1)
is called the length of the series (1).

Due to this definition, the length of series (1) is r, if all Gi’s are distinct.

The subnormal series (1) is said to be redundant if for some i = 0,1,2,...,r-1; G; = Gj+1, otherwise it is
said to be irredundant. One can always construct an irredundant series from a redundant one by deleting
G; whenever for some i, Gi+1 = G;.

So, if (1) is irredundant, then length of (1) is r.

3.2.3. Factors of a Series. Let G be a group and G=G, 2G, 2G, 2...2G, =<e> is a subnormal

G

series for G. Then, %; is called factor group or quotient factor group of the series.
i+l

3.3. Solvable Group. A group G is said to be solvable if there exists a sequence of subgroups

GZGO QGI ;)Gz Q...QGr =< e > such that
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(1) G,AG,0<i<r-l1

i+1

(ii) % is abelian, 0<i<r—1,
i+l

3.3.1. Example. Every abelian group G is solvable. The series G D<e > is a subnormal series, that is

G

<e> A G and its only factor group is <e

) which being isomorphic to G, is abelian.

3.3.2. Results. (i) A subset H of a group G is a subgroup iff ab” € H forall a,beH .

(i1) A subgroup H of a group G is normal iff gilhg € H forevery he H,g eG.

(ii1) Let G be a group and H be a normal subgroup of G, then the set G/H (G mod H) of all cosets of H in
G is a subgroup w.r.t. multiplication of cosets. It is called quotient group or factor group of G by H. If

a,b € G, then HaHb = Hab. The identity element of G/H is H.

(v) If (G,.) and ((_;,*) are two groups. A mapping f:G — G is called a homomorphism, if
f(x.y) = f(x) *f(y) for all x,y € G. Also, it is called isomorphism, if it is one — one and onto. We

write as G =G
(v) Fundamental Theorem of Homomorphism. If G is homomorphic image of G under f (that is,

J is onto) , then %erf =G, Iff is not onto then %erf Ef(G)

3.3.3. Proposition. Every subgroup of a solvable group is solvable.

Proof. Let G be a solvable group and let
G=G,0G, 2G,2..0G, =<e>
be a solvable series for G such that

@) G,AG,0<i<r-I

i+1

G .
(ii) %; is abelian, 0<i<r—1,
i+l
Let H be any subgroup of G and let H, =H NG, 0<i<r, then
H=H,oH oH,>..0H =<e> --(1)
is a sequence of subgroups of H. For it, since € € H, for 0 <i <r. Therefore, H, #¢@ forall 0<i<r.

Let a,b € H = H NG, which implies a,be H and a,b G, .
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Since H and G; are subgroups, therefore, ab™' € H and ab™' € G, and so ab™' € H "G, = H, . Hence
H; is a subgroup of H, 0<i<r.

Now, we claim that the series (1) is a solvable series for H.

First we prove that H,,, A H,, 0<i<r-1.

Let he H.

i+1

andkeH, . Then he H,,=HNG, = heH and heG,

i+1 i+l -

Similarly, ke H =HNG = ke H and kG, .

Since G, AG, thus heG,

i+1°

k''hke HNG,,=H,, andso H,

i+1

keG =k'hkeG, and hkeH=k'hkeH. Therefore,
AH,0<i<r-1.

H. )
Now, we shall prove that %I , 0<i<r—1, are abelian.

i+1

G
To prove this we define a mapping f : H;, = /G by considering

i+1
f(x):x(;iﬂa
where xe H, = HNG,.

We shall prove that /' is well defined and a group homomorphism.

Let x,y € H, suchthat x=y = xy"' =eeG,,.

y:xc;iﬂ :yc;i+1 :>f(X):f(y)

Therefore, f is a well-defined mapping.

SO, Gz’+1xy_1 = Gi+1 = Gi+1x = G

i+1

Again, let x,y € H,  then

f(xy) =006, =xG,,)G,, = f(x)f(y)
So, fis a group homomorphism. Thus, by fundamental theorem of group homomorphism, we have

H G
lkerf;f(Hi)g/Gm- (1a)

We shall prove that Kerf =H.,,, where Kerf :{x eH : f(x) =G,-+1} . For this, we have

xeker f=f(x)=G,, =xG,, =G

i+l

=X€ (;i+l

Now, xe H, =HNG =xeH .So, xeH,xeG,=>xeHNG,,=H,

i+l
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=kerfcH,, (2)

Let yeH,  =HNG,=>yeHandyeG

i+l -
So,

f(y) :yGi+l :CT;H :>y€kerf:>fli+l gker.f (3)
By (2) and (3), H,., =ker f"

Putting this value in (1a), we obtain

H G
lH Ef(]_]l)g /Gi+l .

i+l

G G
Since %; is abelian and [ (Hl) is a subgroup of %; ,s0 f (Hl) is also abelian.
i+l

i+l
H . ) .
Therefore, g s also abelian. Hence H is solvable.
i+l

3.3.4. Canonical Homomorphism. The mapping f:G — G/H defined by f (g)ZHg for all

g € G is an onto homomorphism, where H is a normal subgroup of G. It is called natural or canonical

homomorphism and Kerf = H .

3.3.5. Proposition. Every quotient group of a solvable group is solvable.
-OR- Let G be a solvable group and H is a normal subgroup of G, then G/H is also solvable.
Proof. Let G be a solvable group and let

G=G,0G, 2G,2..0G. =<e>

be a solvable series for G, then

i GuAG.0sisr-1

%
. G, . . .
(ii) i+l is abelian, 0<i<r—1.

Let ¢:G— % be a canonical homomorphism, that is,

q(x) =xH forallxeG
Since G.,, =G, s0¢(G,,,) = q(G).
Now consider the series

G/H=4(G,)29(G)29(G,)2..29(G, )=<H >.
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We claim that this series is a solvable series for G/ H.

Let xeq(G,,) andyeq(G), then there exista €G,,, and € G, suchthat x=g(a) andy =¢().
Now a G,

i+1°

Therefore, q(ﬁlaﬁ)EQ(QH)jC](ﬂl)Q(Of)‘J(ﬂ)E‘](Gm)

BeG andG,, AG, sof'afeG,,.

:q(ﬂ)_lq(a)q(ﬂ)eq(Gi+1):>y_1xyeq(Gi+l)and hence q(GH) Aq(@).

Now we shall prove that q(Gy
q(G

) is abelian.
i+1

5 54(G) .
Let &, € A( Gi+1) be any two arbitrary elements. Then,
a=oq(G,) andﬁ’:ﬂq(GM) for some a,B€¢(G).
Also, a.,3€q(G) = a=q(a') and f=¢(f") for some o', f'€G.. Therefore,
C_YZOZQ((;,-H):C](CY')C](QH)ZQ(Q'QH) andB:q(ﬂ'(;iH)-
Then,

E%ZQ(Q'GM)Q(ﬂ'Gm) ZQ(O"Gmﬂ'Gm) :q(IB'GH—la'(;Hl) ZQ(ﬂ'Gz’H)Q(a'GM) =pa.

G
Therefore, C[( y G is abelian. Hence G/H is solvable.
q( i+l)
3.3.6. Proposition. Let G be a group and H be a normal subgroup of G. If H and G/H both are solvable,
then G is also a solvable group.

Proof. Since H is solvable, so let H =H D H D H, >..DH =<e> be a solvable series for H.

Therefore,

i H,

i+l

H/

ii y is abelian, 0<i<n-1.
(1) H, 1s abelian

Now, since G/H is solvable, so let

G/H=G,/H>G,/H>G,/H>..2G,/H=<H >

AH,0<i<n-1

be a solvable series for G/H. Therefore,
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i G,/HAG/H,0<i<m-1

G/ H .
(ii) ’//;M/H is abelian, 0<i<m—1.
Now consider the series
G=G,0G,0G,2..0G,=H=H,oH, oH,>..0H, =<e>

We claim that this is a solvable series for G, that is, we are to show that

(1) G, AG,0<i<m-landH,, AH, 0<j<n-1
G H. _
(ii) y is abelian, 0<i<m—1 and is abelian, 0< j <n—1
Gz‘+l Hj+1 ’

(1) Itis clear that /,, AH,, 0<j<n-1.
So, we are to show that G,;, A G, 0<i<m-1.

Let xeG andyeG,, . Then, xH € G./H andyH € G, /H . Due to solvability of G/H, we have

i+l -

G,/HAG/H = (xH) (yH)(xH)eG,,/H

= x'wHeG, ,/H = x"'yxeCG

i+1

Thus, G,,, A G, for every i.

H.
(i)  Again, it is clear that %I is abelian, 0< j<n—1.

Jj+l

G, :
So, we have only to prove that %; is abelian, 0 <7 <m—1. Due to Third Theorem of Isomorphism,

i+1

G /H .G, G/ . ..
/Gm /H~= %}M = /Gm is abelian.

Hence G is solvable.

3.4. p-group. A finite group whose order is p" for some integer 7 > 1, where p is a prime, is called a p-
group.

3.4.1. Cyclic group. A group G is said to be cyclic group generated by an element a € G if every
g €G issuchthat g =a' for some integer t. We denote it by G = <a>.

Remark. If the order of a group is a prime number, then the group is cyclic and every cyclic group is
abelian and every abelian group is solvable.
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3.4.2. Center of a group. Let G be a group then the center of G is given by
Z(G)=C(G)={xeG:xy=yx forally e G}.
3.4.3. Corollary. Every finite p-group is solvable.

Proof. Let G be a finite p-group and let O(G) =p" forsome n>1.

If n=1, then O(G) = p so G is cyclic. Hence G is abelian and so solvable.

So let n > 1 and suppose as our induction hypothesis that result is true for all p-groups with order
p'wherer <n

Now, if G is abelian then result is again true, so let G is non-abelian.

Then, Z(G), the center of G, is non- trivial by class equation. But we know that Z(G) A G. Now,
o(G)=p" = O(Z(G)):ps for some s < n.

Since Z(G) is non-trivial, so O(Z(G)) Sl=>s5>1.
o(G) _ .
Then, O(G/Z(G)):—:pn <,
o(2(0))

So, by induction hypothesis, G/Z(G) is solvable. Now, Z(G) is abelian, so Z(G) is also solvable.

Then, by above proposition, G is solvable.

Remark. Let H and K be two groups. Then, the direct product of these groups is the group
HXK:{(h,k):heH,keK}_

Also, if K =K', then X/K = X/K' and K A HxK.
3.4.3. Corollary. Direct product of two solvable groups is again solvable.

Proof. Let H and K be two solvable groups and X = HxK. We know that K A HXK = X. Define a
mapping f : X — H by setting

f(x)zf(h,k)zh forall x € X.
It is easy to show that f is well-defined.
To show that f is a homoporphism.
Letx,y € X, then x=(h,k) andy =(h,k,) for some h,h, € H;k,k € K. Therefore,

[ (%)= f((hk), (k) = f (B, k) = hby = £ (x).f ()

Hence, f is a homomorphism.
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To show that f is onto.

Let i€ H , then for every k € K, we have (h,k) eX andf(h,k) =h.
Hence f is onto.
Thus, by fundamental theorem of homomorphism, we have X/Kerf = H . ---(¥)

Now, we claim that ker f = K .
Let kK € K, we define K':{(e,k):eeH,keK},
We shall show that ker f =K',
For this, let x €ker ' = f(x)=e, where ee H.
But x =(h,k) for some h € H,k € K. Therefore,
f(h,k):e —>h=e :>x:(e,k)eK' = ker f cK' -—(1)
Let xeK' =x=(e,k) forsomekeK. Thus,
f(x)ze —>xekerf = K'ckerf --(2)
By (1) and (2), we obtain
K':kerf:{(e,k):eeH,keK}
Now, by (*), we obtain
X/K'=H (%)

We claim that K = K'= {e} xK, where e H .
Define a mapping ¢: K — K', by setting

¢(k)=(e,k) forall ke K.
To show that ¢ is a homomorphism.

Let x,y € K, then

#(xy) = (&) =(e.x)(e.y) = 4(x) 4 ()

To show that ¢ is one-one.

Let k,,k, € K such that ¢(k1)=¢(k2) :>(€ak1):(eakz) =k =k,.
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To show that @ is onto.

Let (e,k) € K', then for ke K, ¢(k) :(e,k)

Hence @is an isomorphism. Therefore, K = K.

Thus, by (**), since K =K', so X/K=X/K'= X/K=H.
Since H is solvable, so X/K is solvable.

Also subgroup K of X is solvable. Hence X = HxK is solvable.

3.4.4. Remark. (i) Let H and K be two subgroups of a group G. Then, HK is a subgroup of G iff HK =
KH.If H A G, then HK = KH and so HK is a subgroup of G.

(ii) Second Theorem of Isomorphism. Let / and K are subgroups of any group G, where H A G .

Then, I%_[mKEHI%_[.

3.4.5. Corollary. Let H and K are solvable subgroups of G and H A G, then HK is also solvable.
Proof. Since H/ A G = HK = KH , therefore HK is a subgroup of G. Now, by second theorem of

isomorphism, we have
K ~ HK
%{ NK ™ A] '

Now, K is solvable, so I%—I K is solvable, since factor group of a solvable group is solvable. So

HI%_] being isomorphic to I%_[ K is solvable.But H is given to be solvable, so HK is also
solvable, by above proposition.
3.4.6. Sylow p-subgroup.Let G be a finite group and p, a prime number, such that pk |0(G) and

pk+1 Jro(G). Then, any subgroup of G of order p* is called a Sylow p-subgroup of G, where o(G) =

p*q, q is an integer.

3.4.7. Sylow’s First Theorem. Let G be a finite group of order p“q, k >1, where p is a prime number

and q is a positive integer such that g.c.d.(p, q) = 1. Then, for each i, 0<7<k, G has atleast one
subgroup of order p'.

3.4.8. Sylow’s Third Theorem. Number of Sylow p-subgroups is of the form 1+mp, where p is a prime

and m is non-negative integer such thatl + mp | o (G) :

3.4.9. Result. (i) If o(G) = p’, where pis a prime, then G is abelian.

(i) If G has only one Sylow subgroup of order p', then that subgroup will be normal in G.



Abstract Algebra 41

3.4.10. Corollary. Every group of order pq is solvable, where p, q are prime numbers not necessarily
distinct.

Proof. Let 0(G)=pq.If p=gq, then o(G)= p*and G is abelian and hence solvable.So, let us assume
that p > ¢ . Then, by Sylow’s theorem, G has Sylow p-subgroups each of order p and number of sylow
p-subgroups is of the  form lI+mp such that l4+mp|o (G) .That is,

1+mp| pq = 1+mp|q =>m=0.

Hence, G has unique Sylow p-subgroup, say H, and o(H ) = p. Also, we know that unique Sylow p-
subgroup is always normal, so H A G.
o(G)

Now, o(H)=p and o(G/H) = o(H)

:q'

Thus, H and G/H are both subgroups of prime order, so they are cyclic and hence abelian and in turn
solvable. Therefore, by above proposition, G is solvable.

3.4.11. Corollary. Every group of order p’q is solvable, where p, q are prime numbers not necessarily
distinct.

Proof. Let o(G) = p°q , we consider the following three cases
Case (i) p = ¢, Case (ii) p > ¢, and Case (iii) p <gq.
Case (i). If p = ¢, then o(G) = p’ and we know that a finite p-group is solvable hence G is solvable.

Case (ii). If p > ¢ then by Sylow theorems, G has Sylow p-subgroups each of order p* and number of
these subgroups is 1+ mp such that 1+ mp/o G) , m is non-negative integer.

Since ged (p,.g) = 1, 50 1+mp/p*q, implies, 1 +mp/q.
= m = 0,as p>gq.

Thus, G has unique Sylow p-subgroup, say H, and o(H) = p*. Also, we know that unique Sylow p-
subgroups is always normal so HA G.

Now, = p?and o(G/) = 29 _ .
ow, o(H) =p” and o(G/H) o) q

Now, H is abelian, since a group of order p* is always abelian and so H is solvable.

Again, G/H , being of prime order, is cyclic hence abelian and therefore solvable.
Now, H and G/H both are solvable, so by above proposition, G is also solvable.

Case (iii). If p < ¢ then by Sylow theorems, G has Sylow p-subgroups each of order p* and number of
these subgroups is 1, = 1+ mp such that 1+ mp/d G) , m is non-negative integer .

Since ged (p, ¢) = 1,50 1+mp/p*q, implies 1 +mp/q, son,=1+mp=1orgq.
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Again, by Sylow theorems, G has Sylow g-subgroups each of order ¢ and number of these subgroups is
ny= 1+ m' g such that 1+ m'q/d G) , m is non-negative integer .

Since ged (p , ¢) = 1, s0 1+m'q/p*q, implies 1+m'q/p* , s0on,=1+m' g=1o0r p or p>. However, p <gq
sol+m'q#pso ng=1+mg=1 or p2

Following four sub-cases arise:

@mn,=1,n,=1
byn, = 1I,n, = p
©n, =qg,n; =1
) ny = g.ng = p°

If n, = 1, then G is solvable according to case (i1). So, G is solvable in sub cases (a) and (b). In sub case
(c) we have n, = 1, that is, G has unique Sylow g-subgroup of order g, say K. Then K is a normal

2
subgroup of G and o(K) = g and o( G/K ) = P9 = 2 Then both K and G/K , being abelian, are solvable
q

and hence G is solvable by above proposition.

Now we shall prove that sub-case (d) is impossible. In this case, we have p2 Sylow g-subgroups each of
order g, let these be K, K»,... , K. Every K; has g — 1 element of order q.

Also, K; n K; = {e}. So, we have p* (¢ -1) element of order g.

Now , G has ¢ Sylow p-subgroups of order p*, let there be H, , Hs ... ,H, and o(H;) = P

Now , dH NnH,))dH) = p2 = oH nH) =1 or p or p2

But o(HinHy)) # p* , becauseif o(HinHs) = p* , then o(H,~ H>) = o(H))

But HinH,c Hi , so HnH, = H; = H, c H,.

Similarly H, ¢ Hi = H; = H, whichisnotso. So, o(HinH;) = 1 or p.

Now , o(Hyu Hy) = o(H)) + o(Hs) — o(Hi~ Hy) = p*+p*—(1 or p) = p*+p*—p.

So, Ghasatleast p>+p*—p+p’(q—1)=2p" —p+p’q—p> = p* —p+p’q > p’q, elements, which
is a contradiction.

Therefore, G is solvable in all possible cases.
3.4.12. Exercise. The symmetric group S, is solvable for n<4.

Solution. For n=1, S, =</ >, obviously solvable.
For n=2, §, =< I,(l 2) >. Here, o(Sz) =2, a prime number and so S, is abelian and hence solvable.
For n=3, §, =< I,(l 2),(1 3),(2 3),(1 2 3),(1 3 2) >,

Consider the sequence S; D 4, D</>.
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Clearly, 4, A S, and <I> A 4,.

Here, 0(S,/4,)=2= 5,/ 4, is cyclic and so abelian.

Also, o(4,/<1>)=3= A4,/<I > is cyclic and so abelian.

So, the above series is a solvable series for S; and hence S; is solvable.

For n=4, consider the sequence S, 2 4, oV, o< >.

We know that 4, AS,,V, A4, and <I> AV,.

Here, o(S,/4,)=2=5,/4, is cyclic and so abelian.
o(4,/V,)=3= 4,/V, is cyclic and so abelian.

and  o(V,/<I>)=4=2"=V,/<I> is cyclic and so abelian.

So, the above series is a solvable series for S; and hence S; is solvable.

3.4.13. Lemma. If a subgroup G of S, (n > 4) contains all 3-cycles and H be any normal subgroup of G
such that G/H is abelian. Then H contains all 3-cycles in G.

Proof. Given H is a normal subgroup of G. Consider the quotient group G/H and canonical
homomorphism¢ : G — G/ H given by

¢(c)=cH forall oceG.

We know that for this homomorphism, ¢ is onto and ker¢ = H.
Let 0,7 € G then o and 7 are permutations in S,. We compute,
p(o”'n'on)=p(o™)g(n")#(c)p(n)
=(o7H)(n"'H)(oH)(nH)
= (G’IGH)(U’V]H) [ G/H is abelian]
= H.H = H = ldentity of G/H.

=o 'n'lonekerg forallo,neG
o 'n'oneH forall o,n G

Now, let (i j k)be any 3-cycle in G. We shall prove that (i j k) e H .

Since n > 4, so we can find / and m such that both do not belong to the set {i, j,k} . Let

o=(i k1) and 7=(j k m) be any two elements in G. Then
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o' lon=(>ik 1) (jkm) (ik1)(jkm)
=(ilk)(jmk)(ikl)(jhkm)=(ijk)eH

But (i j k) was an arbitrary 3-cycle in G and hence H contains all 3-cycles of G.
3.4.14. Theorem. The group S, is not solvable for n > 4.

Proof. Let, if possible, S, (n > 4) is solvable and let

S =G,20G,2G,2..2G =<e>

be a solvable series for S,. Then, we have

G,AG,0<i<r-1

(i)
3 G : : :
(ii) %; is abelian, 0<i<r—1,
i+l

Here, Gy = S, and so G, contains all the 3-cycles. Now, since G; A G, and G, / G, is abelian and so by
above lemma G, contains all 3-cycles in S;. Again, G, is a subgroup of S, containing all the 3-cycles

and G, A G, and G, /G, is abelian and so by above lemma G, contains all 3-cycles in S,. Continuing

like this, we get G, =<1 > contains all 3-cycles of S, which is absurd. Therefore, S, (n > 4) is not

solvable.

3.4.15. Theorem. A finite group G is said to be solvable iff there exists a sequence of subgroups
GZGO QGI ;)G2 Q...QGn =< e > such that

G,

i+l

Q) AG,0<i<n-1

G .
(ii) %; is cyclic group of prime order for 0<i<n—1.
i+l
Proof. Let G be a solvable group and
G=G,0G, 2G,2..0G, =<e>
be a solvable series for G. Since G is finite, so each subgroup and its quotient group is finite. In

G
particular, %; is finite and abelian also.
i+l

G
If /G is cyclic group of prime order, then we have nothing to prove.
i+l
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G _
If %; is not cyclic group of prime order, then it has a proper subgroup, say / . But then
i+l

_ _ G
H :% for some subgroup H of G;. Since H is a proper subgroup of %; , so H#G and
i+l

i+l

H=G

i+l -

Therefore, we have a subgroup of G such that G,,, € H < G, . Then, either 0(% j is prime or

i+1

there exists H 'such that %

i+1

is a proper subgroup of % , then

i+1

G,

i+1

cH'cHCG,

. . o . H/ .
Since Giis finite, so continuing like this at one stage after a finite number of steps, we get that % is

i+1

a cyclic group of prime order with

G,

i+1

CH, cG,
for some subgroup l of G, . So, from the above discussion it follows that we can find subgroups

i+1

G2oHy,2H,2..2H, 26,

such that H.

i,j+1

AH,  and H,, / H, ., is a cyclic group of prime order for 0< j<m.
Hence, we have a sequence
G=G,=Hy,2H, o..0H,, =G, =H,,20H, o..0H, =G,=H,,D>

H,>.oH, =G,o..0H, ,, =G =<e>

such that H,, / H,,,, is cyclic group of prime order.

Conversely, we know that every cyclic group is an abelian group, so converse is trivial.

3.5. Commutator. Let G be any multiplicative group. Then commutator of two elements x and y of G is
the lement x”'y"'xy of G. We denote it by [x, y].

If z is any other element of G, then the commutator of X, y, z is given by

[x,y, 2] =[x, y]. 2] =[xy 'xy, z] = (x Ty 'xy) 2 (< Ty xy)z = y X Tyxz Xy xyz
3.5.1. Proposition. Prove that G is abelian iff [x, y] =e forall x and y in G

Proof. If G is abelian, then

[x,y]= X'ly'lxy = x'lxy'ly =e.e=¢e.

Conversely, let [x, y] =e forall x and y in G.
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=S>x'y'xy=e =ylxy=x =>Xy=)x
Thus, G is abelian.

3.5.2. Proposition. a € Z(G) iff[a,x]=e forallxeG.

Proof. Let a e Z(G) = centre of G.
Then, [a, x] =a'x 'ax =a'ax'x = c.e =¢
Conversely, let [a, x] =e forall xeG.
=a'x'ax=eforallxeG
=ax=xa forallxe G
=aeZ (G) .
3.5.3. Commutator Element. The element y of G is said to be a commutator element of G if there exist
a,be G such that y=[a,b] that is, y=a"'b"'ab
3.5.4. Derived Subgroup. The subgroup of G generated by all the commutator of G is called the derived
subgroup of G. We denote it by §(G) or G, that is,
5(G):G':<[x,y]:x,yeG>
For example,
5(8y)=<[x.y]:x,yeS,>
=<1,(123),(132)>={1,(123),(132)}
5(G) is also called first derived subgroup.

3.5.5. Results. (i) Derived subgroup of a group G is a normal subgroup of G.
(ii) A group G is abelian iff G = <e>.

3.5.6. n'™ Derived Subgroup. Let G be a group, for every non-negative integer n, define G™ inductively

as follows:
G"=G, G™P = G"', the commutator subgroup of G™.
G™ is called n"commutator subgroup or n™ derived subgroup of G. Thus,

G =G =[GV, G" | =<[x,y]:x,yeG" >
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Thus,

G :[G,G]:<[x,y]:x,yeG>
G? :[G',GVJ =<[x,y]:x,yeG >
GV =[G?,G? |=<[x.y]:x,yeG? >

G =[G",G" |=<[x,y]:x,yeG" >

3.5.7. Result. For any group G, G/G' is always abelian. In general, we can say that G(")/ G

always abelian.
3.5.8. Theorem. A group G is solvable iff G™ = <e> for some 1n>0.

Proof. Let G be a solvable group and let
G=G,20G,0G,2..0G =<e>

be a solvable series for G such that

(1) G,AG,0<i<t-1

(ii) G,/G,,, 0<i<t—1 is abelian.

To prove the theorem, first we shall prove that G**’

c G, forall 0 <k <t by mathematical induction.
Ifk =0, then G < G, = G = G which is true. Thus, result is true for k = 0.

Now, assume that G*” = G, for some k. Then, by definition, we have

G* =" =[¢",6"]c[G,.G,]=G, —(1)

Again, we claim that G, € G, .

Here, G, =<[a,b]:a,be G, >.

Let [a,b] € G,. Then, consider

[a.6]G,.,=a'b"abG,,, =(a'G,,,)(b7'G,.,)(aG,.,)(bG,.,)

= (aileH )(aGkH )(bileH )(kaH ) = a71ab71ka+1
=G,

=[a,b]eG,, foralla,beG,

1S
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=G, Gy, —(2)

By (1) and (2), we obtain
G(k+1) c GkJrl

So, result is true for k+1 and hence by induction hypothesis, result is true for all positive integers, that is,
G < G, for 0<k <t.Inparticular, G G, =<e> = G" =<e>.

Conversely, let G™ =<e > for some n>0. Then, consider the sequence
G=G"2G' oG’ >5..0G" =<e>

We claim that this is a solvable series for G. For this we have to prove that

Qi G agY

i)  GY/G"™ is abelian for each i.

By definition, we have

G =[G",6" |=<[a,b]:a,beG" >

Let [a,b]e G") and ce G,

We shall prove that ¢™' [a,b]c e G,

Consider,
¢’ [a,b] c=c'a'blabc=c"a'cc'b cc acc be
= (c’lac)i1 (c’lbc)i1 (c’lac)(c’lbc)
= [c’lac, c’lbc}
Now, c,a € G = clace GV,
Also, ¢,b e G = ¢'bee G,
Therefore, ¢ [a,b] c= [c_lac, c_lbc] € [G(i), G(i)] =G,
Hence G A G,
Now, we prove that G”'/G"™" is abelian.
Let aG",6G"™) € GV /G™) | where a,b e G" .

Since a,be G = [a,b]e G,
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= [a,b]G" =G"" = a'babG" =G

= blabG" =G = abG™) = paG"™

= (aG"")(bG"")=(bG"")(aG"") = GY/G"Y is abelian.

Hence G is a solvable group.

3.5.9. Corollary. A, is not solvable for n > 5and hence S, is also not solvable for n>5.

Proof. We know that A,, n>35, is a non-abelian group. So, we can say that A #<[ >.

Also, we know that A,, n>35, is simple and so its only normal subgroups are A, itself and the identity

subgroup </ >. So, we must have A| = A .
= (A)=A,=A, = AP =A,
In general, A" = A for all integers k.

Thus, A" %< [ > for any k.Hence A, is not solvable.

Now, A, is a subgroup of S,, S, is also not solvable for n>5, since subgroup of a solvable group is
solvable.

3.5.10. Corollary. Let G #<e >be a finite group. If G is solvable, then G contains a normal abelian
subgroup H #<e>.

Proof. Let G be a solvable group, then by above theorem, for some k >1, we have G*’ =< e > and then
we have the solvable series

G=G"2G6" 26" 5..0G" =<e>
We choose k such that G*™ %< e > . Also, we have G /G™ is abelian.
= G"7 is abelian .

So, H = G* " is an abelian subgroup of G and H #<e>.

3.6. Lower Central Series. The lower central series (or descending central series) of a group G is the
descending series of subgroups

G=G,20G,0G,2..0G =<e>

where each G,y = (G, G, the subgroup of G generated by all commutators [x, ¥]
with x in G, and y in G. Thus, G, = [G, G] = G(l), the derived subgroup of G; G; = [[G, G], G], etc. The
lower central series is often denoted v,(G) = G,.

This should not be confused with the derived series, whose terms are G := [G"V,G" V], not G, :=
[G-1, G]. The series are related by G c G,
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3.7. Upper Central Series. The upper central series (or ascending central series) of a group G is the
sequence of subgroups

G=G,20G,0G,2..0G =<e>

where each successive group is defined by: G,,, = {x eG:forallyeG,[x,y]e Gi} and is called the ith

center of G (respectively, second center, third center, etc.). In this case, G is the center of G, and for
each successive group, the factor group G;/G;;; is the center of G/G;, and is called an upper central
series quotient.

3.8. Check Your Progress.

1. A group of order 1331 is solvable.
2. If G is a group of order 21, then it is solvable.
3. If G is a group having no proper subgroup, then it is solvable

Answers.

1. Every finite p-group is solvable.
2. A group of order pq is always solvable.
3. Since G has no proper subgroup, so it is a group of prime order and hence solvable.

3.9. Summary. In this chapter, we derived that a finite group is solvable if there exists a subnormal
series in which factor groups are cyclic groups of prime order. However, any arbitrary group is solvable
if some n™ derived subgroup of this group consists of only one element, namely the identity element and
the solvability of S, can be obtained independently or by using this result.

3.10. Exercise
1. A group of order pqr, where p, g, r are primes, not necessarily different, is solvable.
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Structure
4.1. Introduction.
4.2. Normal Series.
4.3. Central Subgroup.
4.4. Maximal Subgroup.
4.5. Exercise.
4.6. Check Your Progress.
4.7. Summary.

4.1. Introduction. This chapter contains definition of normal series and its examples. Example of a
subnormal series which is not normal is considered. Definition and important properties related to that of
a nilpotent group, related to proper normal subgroup and center of a group, subgroup and its normalizer
are discussed.

4.1.1. Objective. The objective of these contents is to provide some important results to the reader like:
(1) Every subgroup of a nilpotent group is nilpotent.

(i1) Every factor group of a nilpotent group is nilpotent.

(ii1) Converse result of these results is not true. But after imposing some condition it can be obtained.
(iv) Every p-group is nilpotent.

(v) S, 1s not nilpotent for n > 3.

(vi) Maximal subgroup of a nilpotent subgroup is normal subgroup.

4.1.2. Keywords. Central Series, Center of a Group, Commutator Subgroup.

4.2. Normal Series. A sequence of subgroups G=G, oG, oG, 2...0G, =<e> of a group G is called

anormal series of Gif G, A G for 1<i<r.
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4.2.1. Remark. Every normal series of a group is also a subnormal series for that group. But the
converse is not true. For this, consider

G=4,={1,(123),(124),(134),(142),(143),(234),
(243),(12)(34).(13)(24).(14)(23).,(132)}
the alternating group of degree 4.
Let G, =V, ={1,(12)(34),(13)(24),(14)(23)}, which is known as the klein’s four group. Again, let
G,={1,(12)(34)}.
Now consider the series
G=G,=4,0G,=V,20G,2G,=<I>

We know that ¥, is a normal subgroup of 4, and also index of G, in G, is 2. Hence G, is a normal

subgroup of G,. Also, G, is a normal subgroup of G, as identity subgroup is always a normal subgroup.

So, the series assumed is a subnormal series.

To show that it is not a normal series, we shall show that G, is not a normal subgroup of G . For this,

since (1 2 3) e G and

(123)G, ={(123)1,(123)(12)(34)} ={(123),(13 4)}
and G,(123)={1(123),(12)(34)(123)}={(123),(243)}
which shows that G, (12 3) #(12 3)G,. So, the above series is not a normal series.

4.2.2. Central Series. A sequence of subgroups G=G, G, 2G,>2..2G =<e> of a group G is

called a central series of G if

() G,AG for1<i<r
(i) G.,/G, <Z(G/G, ) forl<i<r.

4.2.3. Nilpotent Group. A group G is said to be nilpotent if it has a central series.

4.2.4. Example. Every abelian group G is nilpotent. The series G D<e> is a central series, that is
<e> A G and

G,/G, < 2(G/G,)
= G,/<e>c Z(G/<e>)
= Gc7(0)
=GcG [ G is abelian therefore, G = Z(G)]

which is true. Hence G is nilpotent.
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4.2.5. Exercise. Show that §, is not a nilpotent group.
Proof. Here, Sy ={1,(12),(13),(23),(123),(132)}.
We know that only proper subgroups of S, are

H, ={1,(12)}, H,={1,(13)},

H,={I,(23)}, A, ={1,(123),(132)}.
Since H,,H,,H, are not normal in §,, so they cannot be the member of central series, if it exists.
Further, 4, A S;. We consider the series

$,=G=G,2G,=4,0G,=<1>

We check the condition G_,/G, = Z(G/G,).
Firstly, fori=1, G,/G, € Z(G/G,) or S,/4, = Z(S,/4;) or S,/ 4, =S,/ 4, , which is true.

Secondly, for G,/G, = Z(G/G,) or 4,/<I>c Z(S;/<I>) or A cZ(S;) or 4, =<I>, which is
never true.
So, above series is not a central series.
Again, we consider the series
$,=G=G, oG, =<1>
In this series, </ > A S,.

We check the conditionG,_, /G, = Z(G/G,) fori=1.

For this, G,/G, < Z(G/G,) or S,/<I>c Z(S,/<I>) or S, =<I>, which is not possible. So, this
series 1s also not a central series. So we proved that both possible normal series of S, are not central
series. Hence S, is not nilpotent.
4.2.6. Exercise. Every nilpotent group is solvable.
Proof. Let G be any nilpotent group and

G=G,0G,0G,2..0G, =<e>
be a central series of G. then,

(1) G, AG for 1<i<r

(i) G.,/G, <Z(G/G,) forl<i<r.
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We shall prove that the above series is a solvable series for G. Since G, A G = G, A G, for all

1<i<r.Now,
Gl._l/G,. gZ(G/GI.)

Since centre of a group is always abelian, so Z (G/ G, ) is abelian. Also, every subgroup of an abelian

group is abelian. So all factor groups are abelian. So, group G is solvable.

Result. If in a group §(G)< Z(G), that is, derived subgroup is contained in centre of the group, then
G/Z(G) is abelian.
4.2.7. Exercise. Any group G with §(G) < Z(G) is nilpotent.
Solution. We consider the series
G=G,2G =2(G)2G,=<e>.
We know that Z(G) A G and <e> AG.
Now, G,/G,=G/Z(G) . But we are given that §(G)cZ(G), so G/Z(G) is abelian. Thus,
Z(G/Z(G))=G/Z(G).Hence G, /G, < Z(G/G,) is true.
Again, G,/G, =Z(G)/<e>=Z(G) and Z(G/G,) =Z(G/<e>)=Z(G).
Therefore, G,/G, < Z(G/G,)is true.

So, the above series is a central series for G and hence G is nilpotent.

4.2.8. Definition. Let H and K be two subgroups of G. Then, commutator subgroup generated by H and
K is denoted by

[H.K]=([h.k]:he HkeK).
Remark. If AgZ(G), then ab=ba forallaec 4,beG.

4.2.9. Theorem. LetG=G, oG, © G, ©...0 G, =<e>be a normal series for G. This series is a central

series iff [G_,,G] = G, 1<i<r orG_ /G, <Z(G/G, )iff [G_.G]c G, 1<i<r.
Proof. Suppose that the series

G=G,0G,0G,2..0G, =<e>
is a central series for G. Then, by definition, G, A G and G_,/G. < Z(G/G, ) for 1<i<r.

Since G, , /G, gZ(G/Gl. )
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= aG,bG, =bG,.aG, forallaeG_,beG
= abG, =baG,
= a'b'abG, =G,
= a'blabeG.
= [a,b]eG,
= <[a,b] caeG _,be G> cG,
= [G..G]<G,
Conversely, let [G_,,G] =G,
We shall prove that G_, /G, < Z(G/G, ).
Now, let aG, € G_, /G, , where ae G_, and bG, €Z(G/G, ), where beG .
Further [a,b]€[G_,G]= G,
= a'blabeg, = a'b'abG, =G, = abG, =baG,
= aGbG =bGaG, = G_ /G cZ(G/G)
4.2.10. Theorem. Every subgroup of a nilpotent group is nilpotent.
Proof. Let G be a nilpotent group and let
G=G,0G,0G,2..0G, =<e>
be a central series for G such that
(i) G AG, 1<i<r
(iv) [G..G]eG,, 1<i<r.
Let H be any subgroup of G and let H, = H N G,, 0<i <r, then consider the series
H=H oH oH,>..0H, =<e> (1)
of subgroups of H.
We claim that the series (1) is a central series for H.
First we prove that H, A H, 1<i<r.
Let xeH, andye H.Then xe HNG, = xe H andxeG,.
Since G, AG, thus xeG,yeHcG=y'xyeG, and x,yeH =y 'xyeH. Therefore,

y'xyeHNG, =H, andso H, AH, 1<i<r.
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Now, we shall prove that [H,_,,H|c H,, 1<i<r.
Let [x,y]e[H, . H].
Now xeH, ,=HNG,_, = xeHandxeG_ and ye HcCG.
So we can say that [x,y]€[G,_,G]< G, [By (ii) of given]
Also, xeH,yeH = x'y'xyeH = |[x,y]eH.
Therefore, [x,y]eG,[x,y]eH = [x,y]eGNH=H,.

= ([xy]:xeH .yeH)cH,

15

= [H_.H]|cH,

It shows that (*) is a central series for H.

4.2.11. Theorem. Every quotient group of a nilpotent group is nilpotent.

-OR- Let G be a nilpotent group and H be a normal subgroup of G, then G/H is also nilpotent.
Proof. Let G be a nilpotent group and let

G=G,2G,0G,0..2G, =<e>

be a central series for G such that

(i) G, AG, 1<i<r

(iv) [G..G]=G,, 1<i<r.
Now consider the series

GH/H=G,H/H >GH/H2G,H/H>..2GH/H=<H >.
G/H=GH/H>GH/H>G,H/H>..oGH/H=<H > *)

We claim that this series is a central series for G/H , that is (i) GH/H A G/H and (ii)
[G_H/H,G/H|cGH/H .
Since H A G and G, is a subgroup of G. Therefore, HG, =G H .
Thus, G.H is a subgroup of Gof H c G.H .
Since HAG = HAGH.
Hence quotient group G,H /H is well-defined.

To prove (i), let « € GH/H and feG/H .
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Therefore, o = xH for some x € G.H and = yH forsomeyeG.
Now, xeGH = x=ghforsomeg G, heH.

Therefore, o =xH = g,hH = g,H .

Consider B 'aff = (yH)f1 (g,H)(yH)=y"'gyH .
Now, G, AGandg €G,,yeG = y'gyeGcGH = p'lafeGH/H.
Thus, GH/H A G/H .
To prove (i), let [e, 8] €[G_H/H ,G/H].
Here, € G, \H/H = a=xH forsomexeG, H
and feG/H = p=yH forsomeyeG.
Also,a=xH =g, hH =g, H forsomeg,  €G,  ,heH.
Consider,
[a.8]=(g..H) (yH) (g.H)(vH)=(g v "'g.y)H =[g...y]H e GH/H .
For, [G_,,G] = G.. Therefore, [g,,,y]€ G cGH forg,_, €G_,yeG.
Therefore, <[a,,8] caeG,_ H/H,Be G/H> cG, H/H.
Thus, [G_H/H,G/H|cGH/H.
4.2.12. Corollary. Every homomorphic image of nilpotent group is also nilpotent.

Proof. Let G be a nilpotent group and G be its homomorphic image, then there exists an onto

homomorphism f:G — G . So, by fundamental theorem of homomorphism
Glkerf =G

Let ker f = H, then H A G and G/H =G . Now G is given to be nilpotent so by above theorem its
quotient group G/H is nilpotent. Therefore, G being isomorphic to G/H is nilpotent.

4.2.13. Corollary. S , n >3 is not nilpotent.

Proof. We have proved earlier that S, is not a nilpotent group. Now, consider the function f:§, =S,
by
f(x)=x forallxes,
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where xon L.H.S. belongs to S, and x on R.H.S. belongs to §,, where x is represented in one-row

representation and fixed elements are skipped.
Here, f([) :I,f((l 2)) :(1 2),f((1 3)) =(1 3) etc. Clearly, f'is a homomorphism. Now, since S, is

not nilpotent so f (S3) is also not nilpotent which is a subgroup of §, and so §, is not nilpotent.

4.2.14. Example. Show that if subgroup and quotient group of a group are nilpotent, then it is not
necessary that the group is also nilpotent.

Solution. Consider the symmetric group G =S,. This group is not nilpotent.

Further, let H = 4,. Clearly H is a subgroup of G and order of H is 3, a prime number, so H 1s a cyclic
group and thus abelian. Further, we know that every abelian group is nilpotent, therefore, H is nilpotent.
Also, G/H is a subgroup of order 2, so it is also an abelian group and so it is also nilpotent.

4.3. Central Subgroup. A subgroup H is said to be a central subgroup of G if H < Z(G), that is, H is
contained in centre of G. Clearly, any central subgroup of a group is also a normal subgroup.

4.3.1. Theorem. If H is a central subgroup of G. Also, H A G, both H and G/H are nilpotent
subgroups of G. Then, G must be nilpotent.

Proof. Since H is a nilpotent subgroup. Let
H=H,oH oH,>..D0H, =<e>

be a central series for H. Therefore,

(i) H, AH,1<i<t

(iv) [H_.H|cH, 1<i<t.
Since G/H is also nilpotent, so let

G/H=G,/H>G,/H>G,/H>..0G./H=<H>

be a central series for G/H. Therefore,

(i) G/H A G/H, 1<i<r

(iv) [G./H,G/H|cG,/H, 1<i<r.
Now consider the series

G=G,0G,0G,2..06G,.=H=H,oH oH,>..0H, =<e>

We claim that this is a central series for G, that is, we are to show that

() GAGH AG, 1<i<r, 1<j<t

(i) [G.,.G]cG,. [H,,.G]|cH, 1<i<rl<j<t.
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To prove (i), let xe G, and ge G, then xH €G,/H and gH € G/H . SinceG,/H A G/H , therefore,

(gH) ' (xH)(gH)eG,/H .

So, g'xgHeG,/H = g'xgeG, = G AG forl<i<r.
Now, we prove that H, A G for1<i<t¢.

We are given that H is a central subgroup and so H < Z(G).

Further, H,c H = H,cZ(G) for1<i<t . Therefore, elements of H, commutes with every

element of G. Thus,

Hg=gH forl<i<tandforallgeG.

So, H AG for1<i<t.

j-1

To prove (ii), we shall prove that [G_,,G] = G,, [H. G] CH,1<i<rl<j<t.

Let [x,y]€[G_,G]. Then, xeG,_,yeG = xHeG_/H,yHeG/H.

But we have [G_,/H ,G/H|cG./H = [xH,yH|eG /H

= [x,y|HeG /H =  [xy]eG

=N ([x.y]:xeG_.yeG)cG = [G.,.G]<g,
Again, let [x,y]e[H,,,G] = xeH .,yeG.
Since xeH, , cHcZ(G) = xeZ(G).

Thus, [x,y] =x"y'xy=x"xyp'y=ec H, = [H G:' cH,.

1
Hence G is a nilpotent group.

4.3.2. Corollary. Every finite p-group is nilpotent.

Proof. Let G be a finite p-group and let o(G) = p" for some n>1.

If n=1, then O(G) = p so G is cyclic. Hence G is abelian and so nilpotent.

So let n > 1 and suppose as our induction hypothesis that result is true for all p-groups with order
p'wherer < n.

Now, if G is abelian then result is again true, so let G is non-abelian.

Then, Z(G), the centre of G, is non- trivial by class equation. But we know that Z(G) A G. Now,
o(G)=p" = o(Z(G)) = p* for some s < n.
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Since Z(G) is non-trivial, so 0(Z(G))>1=s>1.

O(G) n—s n

Then, O(G/Z(G)):m:p <p".

So, by induction hypothesis, G/Z(G) is nilpotent. Now, Z(G) is abelian, so Z(G) is also nilpotent.
Then, by above Theorem, G is nilpotent.

4.3.3. Example. Prove that centre of a nilpotent group G is always non-trivial, where o(G)>1.
Proof. Let G be a nilpotent group and let

G=G,0G,2G,2..2G, =<e> (1)
be the central series for G. Then, we have

() G,AG for1<i<r
(i) G.,/G, <Z(G/G, ) forl<i<r.

Since 0o(G)>1, so G =G, # {e}, so deleting the repeating subgroups from (1), we may take G,_, # {e}..

Using condition (i1) for i = r, we have

G /G c Z(G/Gr) = G, c Z(G)
But G, #{e},s0 Z(G)#{e}.
Hence Z(G), the centre of G is non-trivial.

4.3.4. Result. If H is a subgroup of G such that [H,G]={e}, then H Z(G) .
Proof. Let 7 € H,g € G be any arbitrary elements.
= [h,g]:e = hl'g'hg=e = hg=gh = h:Z(G) = HgZ(G).
4.3.5. Result. If H is a normal subgroup of G, then [H,G|c H .
Proof. Let [h, g] € [H ,G] be any arbitrary elements. Then,
[h,g] =h'g'hg=h" (g"lhg) eH [ g 'hge H as H A G] .
Hence [H,G]c H .

4.3.6. Theorem. Let G be a non-trivial nilpotent group and H be a non-trivial normal subgroup of G,
then HNZ(G)#{e}.

Proof. Since G is a nilpotent group. Let

G=G,0G,2G,2..20G, =<e> (1)
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be a central series of G. then,

(1) G, AG for 1<i<r

(i) G_,/G. <Z(G/G,) forl<i<r.

Deleting the repeated subgroups of this series, we may assume that G,_, # {e} . Now,
[G_.G]cG =<e> = [G_.,G]=<e> = G_cZ(G) )

We consider the two cases: H NG, , #<e> and H NG, | =<e>.

If HNG,_, #<e>,thenclearly HNZ(G)#{e} [+ G <Z(G),by(2)]

which is the required result.

Again, if H NG, =<e >, then there exists a positive integer k such that

HNG #<e> and HNG,,, =<e> 3)

H
Such a positive integer k will surely existas H NG, =<e> and H NG, = H #<e>.
Now consider [H NG,,G|<|[G,,G]<G,,, [-HNG, cG,].
Also, [HNG,,G|c[H,G]c H [-H AG].
By these two, we get

[HNG,,G|cHNG,, =<e> = HNG,cZ(G)
Now, HNG, #<e> = (HNG,)NZ(G)=HNG, #<e> = HNZ(G)#<e>

which is the required result.

4.3.7. Theorem. Let G be a nilpotent group and H be a proper subgroup of G, then H is a proper
subgroup of its normalizer, that is, H < N(H).

Proof. Since G is nilpotent, so let
G=G,2G,20G,2..20G, =<e>

be a central series of G. then,

(1) G, AG for 1<i<r
(i) [G_,,G] <G, forl<i<r.
Since G, =<e>c H and H # G,, so there must exist an integer k such that G, & H but G,,, c H

Now, [G,,H]<]G,.G]cG,,, = |[G.H|cH -—(1) [+G, cH]
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Since G, & H so there exists an element x such that xe G, and xg H . Let h€ H be any arbitrary
element. Then, #' € H and [x,h’lj e[G,,H]<c H . Thus,

x'hxh'eH = x'hxh'heH = x'hxeH = x'HxcH
Also, [x’l,h’lj e[G,.H|]cH = xhx'h'eH = xhx'eH = hex 'Hx

= Hcx'Hx

Thus, we have H=x"Hx = xH=Hx = xeN(H).

But we have assumed that x & H ,so H # N(H) and hence H = N(H ).

4.4. Maximal subgroup. A subgroup H of a group G is called a maximal subgroup if H # G and there
does not exist any subgroup K of G suchthat H c K G

-OR-

H is said to be a maximal subgroup of G if H # G and whenever K is any subgroup of G such that
HcKcG,thenK=HorK=0G.

4.4.1. Corollary. Prove that if a nilpotent group G has a maximal subgroup M, then M is a normal
subgroup and G/M is a cyclic group of prime order.

Proof. We know thatM < N (M ) c G, where N (M ) is normalizer of M. But M is maximal, so M #G
and either N (M ) =M or N (M ) =G . But by the above theorem M =N (M ) . Therefore,
N(M)=G = MAG [“HAGIffN(H)=G].

Now, we claim that o(G/M ) is a prime number.

Let T be any proper subgroup of G/M. Then T = K/M, where K G and M A G. Since T is proper

subgroup, so

T#G/M andT#M = K/M #G/M and K/M M
= K#Gand K #M = McKcQgG,

which is a contradiction, since M is a maximal subgroup.

Hence G/M cannot have proper subgroups. Now, we know that a group having no proper subgroup is a
cyclic group of prime order, so G/M is a cyclic group of prime order.

Notation. Set of all Sylow p-subgroups of a group G is denoted by Sy/,G. If we write G, € Syl G, it

means G, 1s a sylow p-subgroup of G.

4.4.2. Result. If G, is a sylow p-subgroup, then N(Gp) = N(N(Gp ))
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4.4.3. Corollary . Let G be a nilpotent group and G, € Sy/,G , then G, is a normal subgroup of G.

Proof. We know that if G, is a sylow p-subgroup, then N(Gp ) = N(N(Gp ))

Let, if possible, G, is not a normal subgroup of G. then,

N(G,)#G, thatis, N(G,)= G

By above theorem, we know that if G is nilpotent and H = G, then H < N(H). Taking H =N (Gp),

we have N(Gp) c N(N(Gp))

which is a contradiction. Hence G, 1s a normal subgroup of G.
4.4.4. Theorem. Direct product of finite set of nilpotent groups is again nilpotent.
Proof. Let H;, H>, ..., H, be any finite nilpotent groups.
We have to prove that H;xHx ...xH, is also nilpotent.
For this it is sufficient to assume that n = 2.
Let H and K be two nilpotent groups. Then let
H=H oH oH,>..0oH, =<e>
and K=K oK oK,>..0K, =<e>
are the central series for the groups H and K respectively.
Now, if » < s, then we can assume
H., =H_ ,=.=H =<e>
and, if » > s, then we can assume
K.,=K ,=.=K =<e>

to make the lengths of both series equal and so W.L.O.G., we can assume that » = 5. Now, consider the
series

HxK = HxK, 2 HxK, 2 HxK, 2..2 H xK, ={(e,e)}
We claim that this series is a central series for HxK.

For this we shall prove that

(i)  HxK, AHxK forl<i<r
(i) [H_xK_.G]c HxK, forl<i<r

i-1°

To prove (i), let @ € H xK, and € HxK . Then,
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a =(h,k,) forsome h € H, andk, €K, and =(h,k) forsome he H andk e K.

Consider,
Bl =(hk)" (h.k)(hk)=(n" k) (k) (k) = (7 b,k k)
But hyeH,heH and H, AH = h'hheH,. Similarly, k"'kk e K, .
Therefore, f~'af =(h"'hh.k 'kk)e HXK, = HXK, A HXK .
To prove (i), let [x, y] €[H,_ xK,_,,G].
Then, x=(h,k), where he H, ,,k € K, andy =(a,b) where ac H,be K .
Consider,
[x,y]=x"y"xy=(hk)" (a.b)" (hk)(a.b)=(h"a " ha,k"'b"kb)=([h,a],[k,b]).
But heH _,aeH = [hale[H_,H|cH,

and keK,_,beK = [kb]e[K .K]cK,.

i-1°

Therefore, H,xK, and hence [H,_xK,

.Gl HXK, .

This proves that HxK is a nilpotent group.

For the generalization of the result, we can take H=H ;xH>x ...xH,.;and K=H,,.
Then, HxK=H xH>x ...xH, is nilpotent.

4.4.5. Note. Direct product is known as direct sum in case of finite sets.

4.5. Exercise.

1. A group G is nilpotent then there exists some non-negative integer n such that the n™ derived
subgroup of G is the trivial subgroup <e>.

4.6. Check Your Progress:

1. If a group of finite order is nilpotent, then there exists a subnormal series of subgroups for which

each factor group is a cyclic group of prime order.
2. If Gis a group having no proper subgroup, then it is nilpotent.S
Answers:
1. Every nilpotent group is solvable, apply the result of a finite solvable group.

2. Since G has no proper subgroup, so it is a group of prime order and hence nilpotent.
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4.7. Summary. In this chapter, we derived that if a nilpotent group G has a maximal subgroup M, then

M is a normal subgroup and G/M is a cyclic group of prime order and if G is a non-trivial nilpotent

group, H is a non-trivial normal subgroup of G, then H "Z (G) # {e} , which indicates that H contains

atleast one element different from identity ‘e’ which commute with every element of the group.
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COMPOSITION SERIES

Structure

5.1.  Introduction.

5.2. Maximal Normal Subgroup.
5.3.  Composition Series.

5.4.  Zassenhaus Lemma.

5.5.  Refinement of a series.

5.6.  Jordan Holder Theorems.
5.7.  Check Your Progress.

5.8.  Summary.

5.1. Introduction. This chapter contains definition of composition series and its examples. Important
results related to composition series like Zassenhaus Lemma, Schrier’s Refinement Theorem, Jordan
Holder Theorems are discussed.

5.1.1. Objective. The objective of these contents is to provide some important results to the reader like:
(1) Every Abelian group having a composition series must be finite.

(i1) Any two subnormal series of a group have equivalent refinements.

(ii1) Every finite group must have a composition series.

(iv) All Composition series of a group are equivalent.

5.1.2. Keywords. Composition Series, Refinement of a Subnormal Series, Equivalent Series.

5.2. Maximal Normal Subgroup. A normal subgroup H of a group G is said to be maximal normal
subgroup if H # G and there does not exist any normal subgroup K of G such that # < K = G . For
example, consider

S, ={1,(12),(13),(32).(123),(132)}

Then, 4, ={1,(123),(132)}
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is a maximal normal subgroup of §,. But H = {I (1 2)} is not a maximal normal subgroup of S, , since

H is not normal in G.

5.2.1. Simple Group. If a group G has no proper normal subgroups, that is, if the only normal
subgroups of G are {e} and G itself, then G is called a simple group.

5.2.2. Theorem. A subgroup H (# G) is a maximal normal subgroup of G iff G/H is a simple group.

Proof. Let H be a maximal normal subgroup of G. We shall prove that G/H is simple.

Let, if possible, G/H is not simple. Then, G/H must have a proper normal subgroup, say K/H. Then,
K/H#G/H and K/H#H, HAK,KAG.

=>K#G, H#zK,HAK,KAGandHcKcG
which is a contradiction to the fact that H is maximal normal subgroup of G. Hence G/H is a simple
group.

Conversely, Let G/H is a simple group. Then, there exists no proper normal subgroup K/H of G/H and
hence there exists no proper normal subgroup K of G such that HA K. This proves that H is a maximal
normal subgroup of G.

5.3. Composition Series. An irredundant series G=G, > G, 5G,>..oG,=<e> 1is called a
composition series of G if each G, is a maximal normal subgroup of G, or each factor group G, /G,,, is
a simple group.
Clearly, every composition series is a subnormal series. For example, consider the two series

S, D4, oV, o<I> --(1)
and S, 04,0V, oD A4><I> ---(2)

where 4 = {I (12)(3 4)} . Here, series (1) is only a subnormal series but not a composition series, since

<I>1s not a maximal normal subgroup of Vsas V, > 4 o<l >and 4 A V,.

Series (2) is a composition series for S4. Here, all factor groups §,/4,,4,/V,.V,/A,A/< 1> are of

order 2, 3, 2, 2 (prime) respectively and hence simple.
5.3.1. Lemma. If G is an abelian group having a composition series, then G is finite.

Proof. We know that a non-trivial group having no proper subgroup is a finite cyclic group of prime
order. Let G be any simple abelian group, that is, G has no proper normal subgroup, which implies that
G has no proper subgroup because all subgroups of an abelian group are always normal. Hence, by
above result, G must be a finite cyclic group of prime order. Hence we have proved that a simple abelian
group must be a finite cyclic group of prime order.

Now, we are given that G has a composition series. Let it be

G=G6,20G,0G,0..0G, =<e>
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Then, each G,/G

0<i<n-1.

is a simple group. But G is abelian. Hence G,/G,,, is simple abelian group for

i+1 i+1

Therefore, by above discussion, each factor group G,/G,,, must be a finite cyclic group of prime order.

We puti = n-1. Thus, G, /G, =G, ,/<e>=G,_ mustbe of prime order.
Let o(Gn_1 ) =D,

Let 0(G,.,/G, )= p,_, for some prime p, .

o(G
Thus, %: pn—Z = O(Gn—Z) = pn—lpn—Z'
n-1

Continuing like this, we get
O(G) = D, D, o--P2P, Dy » Where O(G[/G[+1 ) =p,.

Hence G is finite.

5.3.2. Normal Subgroup. A subgroup N of a group G is said to be a normal subgroup of G iff Na = aN
for all a€ G, that is, right and left cosets are same for every element of G. We denote a normal

subgroup N of a group Gby N A G.

5.3.3. Second Theorem of Isomorphism. Let H and K are subgroups of any group G, where H A G

. Then, %GKEHI%I'

5.3.4. Lemma. Let H and K be two subgroups of G such that Hk = kH for all k€ K. Then, HK is a
subgroup of G. H is a normal subgroup of HK and H nK is a normal subgroup of K and

I%{mKEHI%I'

Proof. Since Hk = kH for all £ € K, so HK = KH. We know that HK is a subgroup of G iff KH = HK.
Hence HK is a subgroup of G.

Let x € HK be any arbitrary element.
Then,x=hk forall he H, keK.
Also, HK=KHso xe HK = xe KH = xe€kH
= x=kh, for some h, € H .
Then, Hx = Hhk = Hk = kH
and xH = kh;H = kH.
Therefore, Hx = xH for all x € HK .
Hence, H A HK .
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Now, we prove that H N K is a normal subgroup of K.

Let xe HNK and y € K be any elements.
Since xe HNK = xeH andxeK.
Now, xeK,yeK = y'xyek.
Also, xe H,ye K = yH=Hy = xye Hy=yH
= xy=yh' forsomeh'e H = y 'xy=h'forsomeh'e H .
Hence y 'xye H .
Therefore, y'xye H, y'xye K = y'xye HNK.

So H nK is a normal subgroup of K.

Hence all the conditions of second theorem of isomorphism are satisfied and so

I%{mKEH%'

5.4. Zassenhaus Lemma (Butterfly Theorem). Let B and C be any two subgroups of a group G and By
and Cy be normal subgroups of B and C respectively, then

BO(Bm%(BmCO) CO(Cm%(CmBO)'

Proof. LetK = BNC and H = B,(BNC,). Since B, AB = Bb=>bB, forall b e B.

1

But K=BNCc B = Bk=kB, forallke K -~(1)
Now, C, AC = BNC, ABNC=K

= BNC, AK = (BNC,)k =k(BNC,) forallkeK -(2)
Consider

Hk =B,(BNC,)k=B,[(BNC,)k |=(Bk)(BNC,)
— (kB,)(BNC,)=kB,(BNC,)=kH.

Hence by above lemma
HK/ ~K .
=~k G)
Now, HK =B, (BmCO)(BmC)=BO (BmC) —(4)

We shall prove that H NK =(CNB,)(BNC,).
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Let ye H N K be any arbitrary element.

So, ye Handye K = yeH:BO(BmCO) andye K=BnNC.

Now, ye H=B,(BNC,) = y=hb forsomeb, eB,, be BNC,.

Also, ye BnC = y=d forsomedeBNC.

Thus, d=bp = db'=b.ButdeBNC = deCandb'eBnC,cC,cC
= deCandb'eC = db'eC = b,eC.

Again, b, B,, bcC = b, eCnNB,.

Therefore, y=bbe(CNB,)(BNC,) = HNKc(CNB)(BNC,) --(5)

On the other hand, CnB, cCNB=BNC and BnC, = BNC. [+ C,=C]

Therefore, (CmBO)(BmCO)c;BmC=K.

Also, (CNB,)(BNC,)c=B,(BNC,)=H. [CnB,cB,]
Thus, (CNB,)(BNC))c HNK --~(6)
From (5) and (6), HNK =(CNB,)(BNC,) —(7)

Using all the values of H,K,HK and H N K in (3), we obtain

BO(Bm%(BmCO);(Bm%mBo)(BmCO)' —(®)

Interchanging roles of B and C in (7), we get

CO(CN%)(CmBO)E(Cm%mco)(cmgo)- —(9)

But BNC, ABNCand CnB, ABNC [-C, AC]

So, we must have (CNB,)(BNC,)=(BNG,)(CNB,).

By this it is clear that R.H.S. of (8) and (9) are same and hence we get

BO(BQ%(BQCO);CO(CQ%(CQBO)'
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5.5. Refinement of a series. Let G be a group and G=G, G, 2G, 2..0G, =<e> be a
subnormal series for G. A subnormal series G=G, DG 2 G, 2...2G. =<e> is called a refinement

of the former series if {GO,GI,GZ,...,G,} - {G&,G;,G;,...,G‘;} )

The refinement is said to be a proper refinement if {G,,G,,G,,...,G,} < {G(;, G,,G,,..., Gb} .

5.5.1. Equivalent Series. Two subnormal series

G=G6G,20G,0G,0..0G,=<e>
and G=G,oG >5G,5..0G, =<e>

of a group G are said to be equivalent or isomorphic if there exists one-one correspondence between (1)
and (2) such that corresponding factor groups are isomorphic, that is,

) =~ . for0<i<n-1,0<j7<n-1.

5.5.2. Scherier’s Refinement Theorem. Any two subnormal series of a group have equivalent
refinements.

Proof. Consider the subnormal series

G=G,0G,0G,2..0G, =<e> ---(1)
and G=H,oDH oH,>..oH, =<e> --(2)
Then, G, A G, for 0<i<s-1,and G, A G, for 0< j<z-1.

We define, G, =G,

i+l

(G,nH,), 0<i<s-1,0<j<t —(3)
and H,,=H,,(H,NG)), 0<k<t-1,0<[<s ---(4)
Since G,,, A G,, we must have

G..(G.nH,)=(G nH,)G,, [G.nH, cG,]

i+l
So, G, ; is a subgroup of G.

Similarly, H,, is also a subgroup of G.

k.l

Now, H .

j+1

AHJ. = G.

i+1

(G,nH,,)AG, (GnH,) = G, . AG,

i,j+1 i,j°
Similarly, H, ,,, A H,,.
Since H, =<e> and H, = G, we have

G, =G, (Gi mH:): G, .<e>=G,,

it
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and  G,,=G,,(G,nH,)=G,,(G,NG)=G,G, =G,

i+1

Therefore, G,, =G,,,, G,,,,=G,,, forall0<i<s—-1 --(5)

i+1° i+1

Similarly, H, = H,.,, H,,,=H,, forall0<k<t—1 --(6)

Now, we consider two series

G=G,= Go,o 2 GO,I 2.2 Go,z =0, = GI,O 2 G1,1 =2 G1,2 2.2 Gl,t
=G,=G,,26G,,2..2G,_,,2G,

226, =G, =<e> —(7)

s—1,0

G=H,=H,,2H),2..2H,,=H,=H,2H,2H,2..2H0,
oH,_,2..2H,  ,=H =<e> --(8)

0 = 2,1 == t-1,0 t-1,1

Clearly (7) and (8) have same number of terms (#s+/). Also, each of G,,G,,G,,...,G, occurs in (7).
Thus, (7) is a refinement of (1). Similarly (8) is a refinement of (2).

Now, since G,,, A G, and H, , A H,, by Zassenhaus Lemma, we have

Gr+1(Gr ﬁHk) :HkH(Hkay

G (GrmHkH)_ Hk+1 (HkarH)'

r+l

G, Hk/
s = o forall 0<r<s-1,0<k<t-1.
Thus’ A}’,kﬂ Hk,r+1

Hence, the refinement (7) and (8) are equivalent because every factor group of (7) is isomorphic to some
factor group of (8).

5.6. Jordan Holder Theorem. If a group G has a composition series then all its composition series are
pairwise equivalent.

Proof. Let
G=G,0G,0G,0..0G, =<e> ---(1)
be a composition series for G.

Suppose G =H, > H, o H, > ... H, =< e > be a refinement of the series (1). This refinement will be

proper if for somej, H , is a not equal to any G,. Then, we must have for some /,G, > H, > G,,,.
Further, we choose j to be such that G, = H, . Then, H, , 2 G, > H, > G,,,.

Butd AH,, = H,AG,. Also,G,AG = G, AH,. So, H, becomes a proper normal

i+l i+l

subgroup of G, which contains G,,, properly, that is, G, > H, >G,, and H, A G, , which is a
contradiction, because G,,, is maximal normal subgroup of G, .

Hence, we get that (1) cannot have a proper refinement and so we can say that any composition series of
a group cannot have a proper refinement.
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Now, let G=G,>G G, >..0G, =<e> —(2)

be another composition series for G.

As (1) and (2) are subnormal series also, so by Scherier’s Refinement Theorem, (1) and (2) must have
equivalent refinements. But we have proved above that (1) and (2) cannot have proper refinements.
Therefore, both of them must be equivalent.

Hence all composition series of a group must be pairwise equivalent as (1) and (2) are any two arbitrary
series for G.

5.6.1. Jordan Holder Theorem For Finite Groups.

(1) Every finite group having atleast two elements has a composition series.

(i)  Any two composition series for G are equivalent, thatis, if G =G, > G, > G, >...o G, =<e>
and G=H,> H, > H,>..> H, =<e> be two composition series for finite group G, then k = / and
forall0<i<k-1, G /G, = Hﬁ(,-)/H”(,-H) for some permutation 7 on the set {0,1,2,...,k—1}, that is
G,/G,, = H,/H,, for some.

i+l
Proof. (1) We shall prove the result by induction on order of G. Let o (G) =n.

When n =2 ,then G = G, > G, =< e > s the only composition series for G because G, /G, = G being a
cyclic group of prime order is simple. So, the theorem is true for n = 2 .

As our induction hypothesis, we assume that result is true for all groups of order less than o(G) =n,
that is, all groups of order less than » has a composition series. We discuss two cases:

Case I. If G is simple, then G has no proper normal subgroup. Consequently, G = G, > G, =< e > is the
only composition series for G.

Case II. If G is not simple. Let N be a proper normal subgroup of G. Since G is finite so there exist only
finitely many proper normal subgroups of G containing N and let M be one such normal subgroup
having largest number of elements. Then, M is a maximal normal subgroup of G. Clearly, G/M is a

simple group and M = G ,s0 o(M)<n=0(G).

Hence, by induction hypothesis, M has a composition series, say
M=M, oM >M,>..oM,=<e>

then M, /M,

, 1s a simple group for 0 <i<7-1.

Now consider the series
GoM=My,>oM >M,>..DM,=<e> --(1)

Here, G/M is one other extra factor group which is also simple as said above. Hence (1) is a

composition series for G.
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(i1) Suppose G =G, > G, > G, 5...5 G, =<e> --(2)
and G=H,oH >H,>.oH,=<e> ---(3)
are two composition series for the finite group G. We shall prove the result by induction.

Let o(G)=n and if n =2, then G = G, > G, =< e > is the only composition series for G, so the result

is trivial. Hence result is true for all groups of order 2.
As our induction hypothesis, we assume that result is true for all groups of order less than o (G) =n.
Let o(G)=n. We shall discuss two cases:
Case I. When G, = H, . Then,
G oG,2..0G, =<e> ---(4)
and H oH,>..oH, =<e> --(5)

are two composition series for the groups G,, whose order is less than o(G): n . So by induction

hypothesis series (4) and (5) are equivalent. So, we must have k —1=/-1 = k& =/and in series (2)
and (3), we also have

GO/GI = G/Gl :G/Hl ZHO/HI
Hence, series (2) and (3) are equivalent.

Case II. When G, = H, .

Now, series (2) and (3) are composition series, so G, and H, are maximal normal subgroups of G, then
K = G, n H,1s a normal subgroup of G, as well as H,. Also, since G, # H,, so K is properly contained

in G, aswellas H,,thatis, K = G, and K c H, .

Since G, and H, are normal subgroups of G, so G, H, is also a subgroup of G [since HK is a subgroup
of G iff HK = KH]. We claim that G H, A G .

Let xe G H, and ye G,s0 x =g h forsome g G, and h e H,.
Consider,
yixy=ylghy=y"gyy 'hy=(y"gy)(y 'hy)eGH, [+GAGHAH]
Also, G,c G\H, and H, < G, H, [+ G =H,].
Because G, and H, are maximal normal subgroups of G and G,H, A G , so we must have G,H, =G .

Since every finite group has a composition series so let

K=K, oK oK,>..oK,=<e> -—(*)



Abstract Algebra 75

be a composition series for the group K.

Now, we consider the series
G=G, oG o2K=K,o0K,oK,o..0K,=<e> ---(6)
G=H,DH >K=K,o0K, oK,>..0K,=<e> ---(7)

First, we claim that (6) and (7) are composition series. For this, it is sufficient to prove thatG, /K and

H,/K are simple groups.

[-K,/K,., ,G/G, and G/H, are simple by (2), (3) and (*)]

i+1°

By second theorem of isomorphism, we have

GH / _G B
1%{12%;101_[1 [‘HIAG1H1]
G,
= %1; %{ [°°°G1:G1Hl &K:G]mHl] ___(8)

G,
But %] is simple since (3) is a composition series, so %(- must also be simple. Similarly,
1

GH,/ _H, G ~H/
1%;1: /GlmHl = %;1: 1K —)

H
But G/G is simple since (2) is a composition series, SO %< must be simple.
1

By (8) and (9) it is clear that the series (6) and (7) are equivalent because first factor group of (6) is
isomorphic to second factor group of (7) and first factor group of (7) is isomorphic to second factor
group of (6) and all other factor groups are same.

Now, by case I, series (2) and (6) are equivalent, so k = m+2. Again, by case I, series (3) and (7) are
equivalent, so [ = m+2.

Hence, k = [. Also, series (6) and (7) are equivalent; therefore, the series (2) and (3) are equivalent.

5.6.2. Exercise.

1. Give example of a group having no composition series.
5.7. Check Your Progress.

1. All the composition series for a group of order 121 are equivalent.
Answers.

1. Directly obtained from Jordan Holder Theorem for finite groups.
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5.8. Summary

In this chapter, we derived results for composition series and also derived that every finite group must

have a composition series. Also it was discussed that any abelian group having a composition series is

always finite. Thus the only possibility for a group having no composition series is an infinite abelian

group.
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Structure
6.1. Introduction.
6.2. Module.
6.3. Homomorphism of Modules.
6.4. Minimal Generating Set.
6.5. Torsion Element.
6.6. Check Your Progress.
6.7. Summary.

6.1. Introduction. In this chapter Module theory is discussed in detail. The concepts of generating sets,
rank of a finitely generated module and direct sum of two submodules are detailed.

6.1.1. Objective. The objective of these contents is to provide some important results to the reader like:
(1) Simple Modules, Unital Modules, Free Module, Irreducible Module, Quotient Modules.

(i1) Submodules.

(ii1) Kernel and Null Space of a homomorphism.

(iv) Schurs’ Lemma.

(v) Fundamental Theorem on Finitely Generated Modules.

Keywords. Modules, Submodules, Free Module. Rank.

6.2. Module. Let R be aring. A non empty set M is said to be a left module R (or a left R - module) if
M is an abelian group under an operation ‘+’ such that for every » € R , m € M, there exists a unique

element rm € M subject to the conditions:
(1) r(atb) =rat+rb
(i1) (rts)a=ratsa

(i)  r(sa) =(rs)a
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In a similar way, we can define a right R — module by modifying the conditions (i), (ii), (iii) in the above
definition in the following manner,

(1) (atb)r =ar + br
(11) a(r +s) =ar + as
(ii1))  (ar) s=a(rs)

6.2.1. Note. The theory of right R-modules can be developed in same manner as the theory of left R-
module . We shall develop here the theory of left R-modules and shall be omitting the adjective left.

6.2.2. Unital R-Module. If R is a ring with unity, then a R — module is said to be unital if
I.m = m forallmeM.

Remark. If a ring R is a field, then a unital R-Module is a vector space over the field R . So we can say
that concept of a module is a generalisation of the concept of a vector space.

6.2.3. Example. Every abelian group G is a module over the ring of integers, Z.

Solution. Let G be an abelian group, the operation in G being denoted by + and identity of G being 0.

For any integer n and for element a € G, we define
na=a+a-+...ta (n-times)
Then by closure property na € G.
Now to prove that G is a module over I, we have to prove that
(1) m(a+b)y=(a+b)+(a+b)+...+(a+Db) (m-times)
=(a+a+...ta)+(b+b+...+b) [ Gis abelian]
=ma + mb
(i1) (m+n)a=a+ta+...+ta (m + n times)

=(ata+...ta)t(ata+t...+a)

m- times n- times
=ma +na
(ii1) m(na)=na+na+... +na (m-times)
=n(a+a+... ta) ( m-times)

=(ata..+ta)+(ata...ta)+..+(at+a...+a) [n-times]
=ata+t..ta ( mn - times)
=(mn) a

Hence G is a module over 1.
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6.2.4. Exercise.
1. Every ring R is an R — module over itself.

2. Every ring R is an module over its subring S, OR, If R is a ring and S be its subring then R is an S —
module.

Remark. With this, we confirm that ring R of real numbers is a Q — module and a Z — module.
3. Every abelian group G is module over the ring of integer Z.
4.Let R be aring and n be a positive integer. Then R" ={(a,,a,,...,a,):a, € R} is an R — module
under the operations defined by
(a,a,,...,a,)+(b,b,,...b)=(a,+b,a,+b,,...,a,+b,)
and r(a,,a,,...,a,)=(ra,ra,,..,ra,)

for all (a,,a,,...,a,),(b,b,,...b,)€ R" and forall »reR.

5. (Elementary properties of module) Let R be a ring and M be an R — module. Then for all a,b,c e M,

we have
(i) a+b=a = b=0
(1) a+b=0 = a=-b

(i) a+b=a+c = b=c
(iv) b+a=c+a = b=c

6. Let R be aring and M be an R — module . Then
(i) r0=0 forall reR
(i1) 0Oa=0 forall ae M
(1) (-r)a=—(ra)=r(-a) forallreR,aeM
(iv) r(a—b)=ra—rb forallreR,a,beM
(v) (r—=s)a=ra—sa forall r,seR,aeM.

7. Let R be any ring and A be a left ideal of R. Let M consist of all cosets a + A, where a € R, of A in R
Thus, M = { a+ A :a € R} Then, M is an R- module if the two requisite composition are defined as
follows:

(a+tA)+(b+A)=(a+b)+A
ra+A)=ra+A

Remark. M is written as R- A or R/A and is called the difference (or quotient) module of R by A.
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6.2.5. Sub- module. A non — empty subset N of an R — module M is said to be submodule of M if N
itself is an R — module under the operations of addition and scalar multiplication as defined for M.

If M is an R-module then M itself and {0} are always submodules of M and are termed as improper
submodules. Any submodules of M other than M and {0} are called proper submodule.

6.2.6. Exercise.

1. Let R be a ring and let M be an R — module. A non —empty subset N of M is a submodule of M iff N
is additive subgroup of M and is closed under scalar multiplication

Alternatively, A non — empty subset N of R —module M is a submodule of M iff a—b e N for all
a,beN and rae N forallaeN,reR.

2. If A and B are two submodule of an R- module M. Then ANB is also a sub-module of M.
3. Arbitrary intersection of submodules of a module is a submodule.

4. Let {M,} be a family of submodules of module M. Suppose this family is totally ordered or linearly
ordered, that is, given M, M, €{M,},  then either M, c M, orM, c M, then UM, is a

Aen

submodule of M.
5.If M is an R —module and a € M then the set Ra ={ra : r € R} is a sub module of M.

6. Let M be an R —module. Define S= {ra+ma : re R, meZ}, Z being the ring of integers, then S

is an R — submodule of M containing ‘a’.
7. If A and B are submodules of an R-module M, then A+B is also a submodule of M .

6.2.7. Submodule generated by a subset of module. Let M be an R- module and S be a non-empty
subset of M. If A is a submodule containing S and is itself contained in every submodule of M
containing S, then A is called the submodule of M generated by S.The submodule of M generated by S
will be denoted by < S >. It should be noted that < S > is the smallest submodule of M containing S. It
can be seen that the intersection of all the submodule of M containing Sis the submodule of M generated
by S.

6.2.8. Theorem. The submodule of a unital R- module M generated by a subset S of M consists of all
linear combinations of elements in S.

Proof. Let L(S) denote the set of all linear combinations of the elements of S, that is,
L(S)={rja; +nay+...+ra,:a €S, i€ R}
First we shall prove that L(S) is a sumodule of M.

Leta=rja;+na,+...+ra,and b=sb;+ s;by+ ... + s,b, be any two elements of L(S), where r;, s;
€R and a;, b; € S.

We have,
a-b=rna;+nay+ ...+ra,t (-s))b;+(-s2)ba+ ...+ (-sn)by

is a linear combination of some elements of S, which implies a-b € S. Thus, L(S) is an additive
subgroup of M.
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IfreRanda=rja;+nay+...+ra, € L(S), then

ra=r(rja;+nay+...+1a,)
=r(rja)) + r(ray) +. .. +r(rya,) =rri(ar) + my(ax) + . . . + rra(ay)
which implies, ra € L(S), as rry, 112, . . . 11y, € R. Hence, L(S) is a submodule of M.
Next, we claim that S is contained in L(S).
Leta€ S,thena€ S, 1 € R, soa.l1 € L(S), or, a € L(S). Hence S is contained in L(S).
Thus, L(S) is a submodule of M containing S.

Now, if W is any submodule of M containing S,then each element of L(S) must be in W, as W is closed
under scalar multiplication & addition.

Therefore, L(S) will be contained in W. Hence, L(S) = < S >, that is, L(S) is the smallest submodule
generated by S.

6.3. Homomorphism of Modules.

Let M and N be two R-modules. A mapping T : M — N is called a homomorphism or module
homomorphism if

(1) T(m;+m;) = T(m;) + T(m,) for all m;,m; € M
(i1) T(rm) =rT(m) forallm € M, r € R
The kernel K(T) of T is defined as
K(T ) ={m € M: T(m) = 0 where 0 is the additive identity of N }
8.3.1. Theorem. The kernel of a homomorphism is a submodule.

Proof. Let K(T) be the kernel of homomorphism T of R-module M in to an R-module N, then K(T) =
{m € M : T(m)=0}. We are to prove that K(T) is a submodule of M. Since

T0)=0=> 0 K(T)=>K(T)# 0
Let m;,m; € K(T) => T(m;) = 0 = T(my), then T(m; - mp) = T(m;) - T(mz)=0-0=0
=> m;- my€ K(T)
Hence, K(T) is an additive subgroup of M.
Again, r € R and m € K(T) => T(m) = 0, then T(rm) = rT(m) =>1.0 =0=> rm € K(T)
Hence, K(T) is a submodule of M.

6.3.2. Theorem. The range of a homomorphism is a submodule.

Proof. Let T: M — N is a homomorphism where M and N are R-submodules. Then, T(M) is the range
of M under T. So, T(M) = {T(m) : m € M}.
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We claim that T(M) is a submodule of N. Let T(m;) and T(m;) be any two element of T(M) where

mip,mp eEM

We have, T(m; - mp) = T(m;) - T(my) => T(m; - m,) € T(M) [*m;-my €M ]
~ T(M) is an addtive subgroup of N.

Let r €R and T(m) €T(M) where m €M, then we have rT(m) = T(rm ) € T(M), as rm € M.
Hence T(M) is a submodule of N.

6.3.3. Theorem. Let T:M—N be a module homomorphism. Then, T is a monomorphism iff K(T) = {0}

Proof. Let T be homomorphism of an R-module M in to an R-module N and assume that K(T) = {0}.
We claim that T is a monomorphism

If m;, m; € M such that T(m;) = T(m,)

=> T(ml) - T(l’l’lz) =0 => T(ml- I’nz) =0
=>>m;- mpE K(T) :{0} =m;-my=20
=>m;=m, =>T is one-one

Conversely, suppose that t is one-one

Let m € K(T) then T(m) = 0. We know that T(0) =0 => T(m) =T(0) => m =0, since T is one-one.
Hence Ker T = K(T) = {0}.

6.3.4. Quotient Modules. Let A be any submodule of an R-module M. Then A is an additive abelian
subgroup of M. If m € M, then m + A is coset of A in M. Then,

M/A={m+A:m€ M}
is an R-module unknown as quotient module with addition and scalar multiplication defined as:
(m;+A)+ (my+ A)=(m;+my) + A
and r(m;+A)=rm; +A;r€R, mEM.
6.3.5. Exercise.

1. If M is an R-module and N is an R-submodule of M. The mapping T : M — M/N defined as
T(m)=m+N for all m € M. Then, T is an R- homomorphism of M onto M/N and kerT = N.

2. Fundamental Theorem of Homomorphism on Modules. If T is a homomorphism of an R-module
M onto an R-module N such that ker T = A then N is isomorphic to M/A, thatis, M /kerT = N .

Hint. To derive it define a mapping ¥: M/A —N as ¥(m + A) = T(m) for all m € M, and then prove that
this mapping is an isomorphism.

6.3.6. Cyclic Module. An R-module M is said to be cyclic if there is an element m, € M such that every
m € M is of the form m = rm,, where r € R . Also m, is called a generator of M and we can write M = <
m,>= {rm,: r € R}.
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6.3.7. Theorem. Let M be a unital R-module and for a fixed element m € M, let A = {rm : r € R}. Then,
A is cyclic submodule of M generated by m.

Proof. Let a, b € A Then, a = rym and b= rom for r;,r, € R. We have
a-b=rm-rnm=(r;-r,)m EA [ " r-n€ER]
Forr € R and a €A such that a = rym for some r;€ER
ra = r(r;m)=(rr;)m € A [ - 1 ER]
=>ra EA

Hence, A is a submodule of M. Also 1 € R, so 1.m € A => m € A. Due to the definition of A, we
conclude that A is cyclic submodule of M generated by m.

A+B/ ~ A4
6.3.8. Theorem. If A and B are submodules of M. Then, /B = /4 NB -

Proof. Consider the mapping ¥: A+ B — % NB defined by

Yx+y)=x+(A[) B) forallx € A,y €B.
(1) ¥ is well defined. Let x; + y;, X2+ y2 € A + B are such that
X1tyi=Xty: == Xi-X2=y2-Y1
Since A and B are submodules of M, so x;, x,€E Aandy;, y2,€EB = x;-x, € A, y,-y € B.
Now, X;-X =y2-y1 => X1 - X2, EB [ y2-y1€EB]
andy,-y €A [ " X1- X2€A]
=> X|-X2=y2-y1€EA( B
=> X;-x2EA[) B
= x3+tANB=x+tA B
= Yxity)=¥(x2ty2)
(i1) ¥ is a module homomorphism. Let x; +y;, X, +y> € A + B. Then
Pl(xityr) + (x2F y2)] = Pl(x1 7x2)+(y1 + y2)]
=(x1+x)+ANB=(x1+AN B)+(xx+A ) B)
=¥(x;ty)) + ¥ (X2t y2)
and  W[r(xty)]= Y(rxtry)=rx + A (] B
=r(x + A () B)=r ¥Y(xty)

Therefore, ¥ is a module homomorphism.



84 Modules

(ii1) ¥ is onto.

Letx+ A BE%HB,WherexEA=>x+yEA+B fory € Band Y(xty )=x+ A (1 B

=>Y¥ is onto.

By Fundamental Theorem of module homomorphism, we have

A+B ~A4
kerl//_/élﬂB )

We claim that ker ¥ = B.

By definition, ker ¥ = {x+y : ¥(x+y)=A (| B} = {xty :x+tA (1 B=A ) B}
= {xty:Xx €A (] B}={xty:x € B,y € B}
={z:z€B} =B

A+B/ ~ A
Hence by (*), we have 4_ /4(13'

6.3.9. Irreducible Module. A R-module having no proper submodule is called an Irreducible module.
6.3.10. Theorem. Prove that any unital, Irreducible R-module is cyclic.

Proof. Let M be any unital irreducible R-module, then the only submodule of M are <0> and M itself.
We claim that M is cyclic

If M =<0 >, then obviously M is cyclic. Let M # < 0 > . Then, there exists atleast one element m, € M
such that mg#0 .

Let A ={rm, : m,€ M, r € R}
We shall prove that A is a submodule of M
Leta, b € A, then a= rim, and b = rom, for r;, r, € R and m, € M.
We have, a-b=rm, - nm,=(r;-r)mEA =>a-b€A
Therefore, A is an additive subgroup of M.
Now letr € R and a=rym, € A.
Then ra = r(rym,) = (rr;)m, € A [ " i ER]
=>ra € A forallr ER
=> A is submodule of M
As given M is unital module, so 1.m,= m,, where 1 is unity of R .
Sincel ER, mieM=>1m,eEA => m, € A.
However, m, # 0, so A #< 0>, but M is irreducible. So we must have A=M.

Since A is cyclic, so M must be cyclic.
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6.3.11. Exercise.

1. If A is a left ideal of R and M is an R-module, then for m € M, Am={xm : x €A} is a submodule of M.

2. Let M be an R- module. If I is a right ideal of R, then the collection of elements y € M such that by =
0 for all b € I is a submodule of M.

Hint. Let A={y:y €M, by=0forallb €1}, Then A is a submodule of M

6.3.12. Theorem. Suppose that R is a ring with unity and M is a module over R but is not unital. Then,
there exists some non-zero m in M such that rm = 0 for all r € R.

Proof. Since M is not unital then there exists m € M such that 1.m #m
=Ilm-m#Butlm-meM[ “"1.meMas 1 € R, m € M]

Letmpy=1.m-m#0

Then rmp = r(1.m - m) =r(1.m) - rm = 0, that is, rmy = 0 where mo # 0 for allr € R

In particular, rmp = 0 for all r € R.

6.3.13. Exercise. If M is an irreducible R- module. Then, either M is cyclic module or for every m € M
andr € R, rm = 0.

Solution. Given M is irreducible, that is, < 0 > and M are the only submodules of M.
Letm € M. Consider N={rm:r€R }
We claim that N is a submodule of M
Leta, B EN=>a=rm,=rmforsomer;, € R. Thena-f=rm-mm=(r-n)mEN,asr-n€E
R. Therefore, N is an additive subgroup of M.
Let a € N and r € R then ro=r (r;m) =(rr;)m € N. [ " rr ER]
Thus, N is a submodule of M .

=>N=<0>orN=M
If N=<0>thenrm=0 forallr € R, m € M.
fN=M,thenM={rm:rER,meM }

=> M is a cyclic submodule.
6.3.13. Exercise.
1. Suppose M and N are submodules of a module P over R, then

MN ={0}
iff every element z € M+N can be uniquely expressible as z=x+y with x € M, y € N.

2. The necessary and sufficient condition for a module M to be the direct sum of its two submodules

M; and M, are that (i) M = M, +M,, (i) M; [ M, = {0}.
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Finitely Generated Module. An R-module M is said to be finitely generated if there exist elements a;,
a2, .. a, € M such that every m in M can be written as:

m=rja; +ay + ... + ryay; r;’s €eR
Then, {a;, as, . an} is called the generating set of M.

6.4. Minimal Generating Set. The generating set of a module which has as few elements as possible is
called minimal generating set, that is, if we remove even a single element from this set, this set is no
longer a generating set.

6.4.1. Rank of a Module. The number of elements in a minimal generating set of module is known as
the rank of module.

6.4.2. Fundamental Theorem on Finitely Generated Module.

Let R be a Euclidean ring, then any finitely generated R-module M, is the direct sum of a finite number
of cyclic modules.

Proof. We shall prove the theorem by induction on the rank of M. If rank of M is 1, then M is generated
by a single element and hence M is cyclic. The theorem is true in this case. Now as an induction
hypothesis, we assume that the theorem holds for all R-modules of rank k - 1.

Now consider R-modules M with rank k.
Given any minimal generating set aj, ay, ..., ax of M, if any relation of the form
maj=ma=...=mag=0,

then M is the direct sum of M;,Ma,....,Mk where each M; is cyclic generated by a; and the theorem is
proved.

So, let given any minimal generating set by, ba, ..., by there exists 1y 12, ..., 1x € R such that r;b; + by +
... T b= 0 but not all of riby, rbs, ..., riby are zero.

Now among all possible such relations for all minimal generating sets, let s; be the element of R with
minimum d-value d(s;) and let the generating set for which it occurs be aj, ay, ..., ax. Thus we have

sja;+ sar+ ... +sga=0. (1)
Now, if for any 11, 12, ..., T ;
na;tna+ ... +na=0, (2)
then we claim that s;/r;

Since 11, s;1 € R, a Euclidean ring, so there exist m, t € R with r; = ms; + t, where either t = 0 or d(t) <

d(sy).
Multiplying (1), by m and subtracting from (2), we get

(r; -msp)a; + (rp -msp)az+ ... + (rx - msy)ax=0 => ta;+ (r; - msy)a+ ...+ (rx - msg)ag =0
Thus by choice of s; we must have d(s;) <d(t)

=d(t) £ d(s;)) = t=0 => r=ms; => si/1].
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We further claim that s,/s; fori=2, 3, ..., k.

Suppose not, then let s; does not divide s;, so there exists my, t; € R such that s, = mys; + t,, where d(t;)<
d(s;) [if t, =0 then s;/s;].

Now clearly a, =(a, +m,a,),a,,...,a, generates M.

Consider, s; g + tha, + s3a3+ ... + s ac= si(a; + meay) + thay + s3a3 + ... + spax
1

=sja; + (symy + ty)ap + szaz + ... + spak
=s1a; + s2ay+s3az + ...+ sgag= 0.

Thus, t, occurs as a coefficient in some relation among elements of a minimal generating set. so by
choice of s; we have d(s;) < d(t,), which is a contradiction to the statement that

d(t)) <d(s))=>si/sz.

Similarly it can be proved that s,/s; for all 1.
Let sp =mps; s3=m3sy, ..., Sk = MyS;, [2(a)]
Now consider the elements al* =a;+ mpa + ... + myay, as, as, ..., ax. Clearly al* , 42, ..., ax generate M.
Let M; be the cyclic submodule of M generated by @, and M, be the submodule of M generated by a,
...,ax. We claim that M =M; @M, *)
Since a;, a, ...,ax generate m, so clearly M = M; +Mj in order to prove (*) only we have to prove now is
that M; N M, = {0}. For this, letp € M, M,

=>p€M,;andp € M,
Now,p EM; =>p=r al*,for somer; € R [ - M;is generated by al*]
Also,p € My =>p=rna,+ ... + rxax for somery, 13, ..., iy E R
Now we have r2g; = 128, + ... + iy,

=>Tr1g -T2a+ .. T rag=0

=>r(a; +a;my+ ... + agmy) - raz- ... - ax =0

=>rja;+ (rymy - rp)az + ... + (rymg - ry)ag =0 3)

Thus we have obtained a relation between a;, a,, ..., ax in which coefficient of a; is r;. Hence by what we
have proved above s;/r;. Let r; = 1s; where | € R, so we have

=1[si(a; + mpay + ... + mysy)] = 1[s;a; + sympay + ... + symyag]
=1[s1a; + spax + ... + sxag] =1(0) = 0.

=M, ﬂMz = {0}
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and this proves (*), that is, M is direct sum of M; + M,. Now, M, is generated by a,, as, ..., ax. Thus, rank
of M, is atmost k - 1. So by induction hypothesis, M; is the direct sum of cyclic submodules. Therefore,
M is the direct sum of cyclic modules.

6.4.3. Schur's Lemma. If M is an irreducible or simple R-module, then the endomorphism ring Endg
(M) is a division ring.

Proof. Let @ (# 0) € Endr(M), since ker@ is a submodule of M and ker@ # M, so ker@® = {0}, thus @ is
one one. Also, the image of @(M) is an R- submodule of M.

Since @ # 0 => @(M) # 0.

But M is irreducible => @(M) = M => @ is onto. Thus @ is one one and onto, hence has an inverse in
Endgr (M). Hence, we have shown that every non zero element of Endr(M) is invertible. Hence Endr(M)
is a division ring.

6.4.4. Free Module. An R-module M is called a free module if M has a basis, that is, there exists a
subset S of M such that M is generated by S and S is linearly independent set.

6.4.5. Theorem. Let M be a free module with a basis {ej,e,,...es} then
M =R"
6.4.6. Annihilator of an element.

Let M be an R-module and x € M. The subset {r € R: rx = 0} is called annihilator of x and is denoted by
Ann(x).

6.4.7. Exercise. Ann(x) is a left ideal of R.
6.4.8. Theorem. Suppose 1 € R, then M is a cyclic module iff M = R/I, where I is a left ideal of R.

Proof. First suppose that M is cyclic R-module, then M = Rx for some x €e M

Define a mapping f: R—M by f(r) = rx

Now we shall show that f is a homomorphism of left R- module
f(r+s)=(r+s)x =rx + sx =f(r) + (s) Vr,seR

and  f(sr) = (sr)x = s(rx) = sf(r) Vr,seR

Hence, fis an R-module homomorphism.

We shall prove that f is onto.

Let y e M = Rx. Then, y = rx for some r € R. Now, r €e R = f(r) =rx =y. Hence, f is onto.

Thus, by Fundamental Theorem of Homomorphism 1% = M , where I =ker fis a left ideal of R.
Conversely, suppose that & [ =

Let f: % — M be the given homomorphism. Since 1+] € }% .
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So let f(1+]) = x

Let y € M. Now, f is onto, so there exists r+I € R/I such that f(r+]) =y.
= flr(1+]) =y = rf(l+th=y = X =Y.

Hencey e M = y=rxeRx = M cRx.
Againx e M = Rx < M.
Hence, M = Rx

= M is a cyclic module.

6.4.9. Theorem. Let R be a ring with unity and M be an R-Module. Then the following conditions are
equivalent:

(1) M is a simple R-module.

(11) Every non-zero element of M generates M.

(i) M= I% where I is a maximal ideal of R.

Proof. (i) = (i1)
Let M be a simple R- module. Then, {0} and M are the only submodules.
Letx#0eM. Since 1 e R and 1x=x#0, therefore x e Rx=N=<x>

Now, N is a non zero submodule of M and M is simple, so N =M =M = Rx, that is, every non zero
element of M generates M.

(it) = (i)
Suppose that M is generated by every non zero element of M. So let N # {0} be a submodule of N. Take
0 # x € N. Then, by the given condition M = Rx

Now, x ¢ N = Rxc N, thatis, M < N. Also,NcM = M=N.

Thus the only non zero submodule of M is M itself. Therefore M must be simple.

(1) = (iii)

Let 0 # x € M then N = Rx is a non zero submodule of M, since M is simple so N = M, that is, M = Rx.
Define a map f: R— Rx =M by f(r) =rx, forallr e R

It is easy to see that f is an onto homomorphism (as proved in previous theorem). Then by Fundamental
Theorem of Homomorphism for modules, we have

R ~
Ber =M

Let I =ker f. Then, I is a module and 1% =M .
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We shall prove that I is maximal ideal of R.

Suppose J is a left ideal of R such that I cJ<R . Now % is a submodule of 1%

Since B/ =~ M and M is simple, therefore, l% is also simple. But then either % is zero submodule or

/-
Jf= B hatis, 1= {1y or 4= B/
= J=TorJ=R.

Hence, I is a maximal left ideal of R.

(1ii1) = ()

Suppose M = I% where I is a maximal ideal of R.
Now, I is a maximal left ideal of R = I #R.

NowleR = 1+l€ 1% and 1+I¢I(zeroof1%)
By definition,

1(1+)=1-1+1=1+1#1 = RA+D#I = R(I%);AI =  RM# {0}

Let N be a submodule of M. Since M = R/ | so there exists some isomorphism ¢: M — }% . Then ¢

] 9
(N) is a submodule of % and precisely of the form % where J is a left ideal of R containing I.

Now I is maximal left ideal of R and I cJcR.
= either J =1, then % =] = zero element of % .
= ¢ N)={L}

But ¢ is one one =N = {0}

If =R, then ¢ (N) = R];M =N=M

Hence {0} and M are the only submodules of M.
Therefore, M must be simple.

6.4.10. Definition. Let M be an R-module and N be a submodule. We say that N is a direct summand of
M if there exists another submodule N' of M such that

M=N®N".
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6.4.11. Theorem. Let M be an R-module and N be a submodule of M such that % is a free R-module

then N is a direct summand of M.

Proof. Let {x,+N},_ be abasis of % over R, where x, e M VA e A. Since a basis is linearly
independent, therefore this basis will not contain zero element.

Thus, X, +N#N VAena,thatis, X, €N VAien.

LetB={x,},.,.,cM and M'=(x,),_,thatis, M is a submodule of M generated by B. We shall
prove that M= NOM'
LetxeM, thenx +N¢ %.Now {x,+N},_. is abasis of M%\f’ so there exists ry, 17, ..., I, € R such
that

XtN=r(x, +N)+rx, +N)+...+75x, +N)

= (X, +N)+(nx, +N)+. .. +(,x, +N)

=(nx,+nx, +...+1,x, )+N

= irixﬂi +N

i=1

n
:>x—2rl.xi eN

i=1

Let x—Zrl.xl.:y, yeN :>x:y+2rixieN+M.
i=1 i=1

ThusM=N+ M'.LetZeNNM',thenZe N & Ze M'. Now Z ¢ M' =<B>
=Z=tx, +,x, +..+tx, , L ER

=Z+N= itixli +N=Zn:ti(xﬂ[ +N)

i=1 i=1

= > 1,(x, +N)=Z+N=N [-ZeN].

i=1

Since {x,+ N},_, is a basis of % , therefore, ¢, =0 Vi 1<i<n

Butthen Z =Y rx, =0 = NNM' = {0}

i=1

Now it is clear that M=N ® M', that is, N is direct summand of M.
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6.4.12. Theorem. Let M, M; be free submodules of M such that M; + M, = M, @M, , then M;+M; is

also a free R-module.

Proof. Now M, is a free R-submodule of M, so M has a basis say {x, }

l€1

Similarly, M, has a basis say {y}

jes &
Let B= {X;}i; WY} s
Then, B M;+M; [*"M,M, cM,+M, ]

Let x € M+ My, then x = x'+y' where X'e M, and y'e M, . Now {X,},_, is a basis of M; over R.

= x'is a linear combination of finite number of elements, say xi, Xz, . . ., Xm, that is,
X'ZZrkxk , L eR.
Similarly, there exist elements yi, y2, . . ., yn such that

y'ZZstyt , S, €R
t=1

Therefore, x=x'+y'= Zrkxk + ZS V.

t=1

= M, +M, is generated by B.
Next, suppose B = {z, }, . Letri, 12, . . ., 1o be such that 1z, +1,z, +...+12 =0,z eR.
Since ‘+ is commutative, we may assume that z, ,z, ,...,z, €{X;},, and

zZ, bonsZy €4Y 1

z
mt+1 ? km+2

Hence, 1z, + 1z, +...+1,2, =-(1,,2, t1r,,z, +...%t1z ).

ezt +rnzkn) € M,.

m+2

rlzkl-i- rzzk2+ .t wZc € M, and -(1,,,Z Kot
Hence, 1z, +nz +...+1,2 €M M, ={0}, thatis, 5z, +1,z, +...+1,2 =0.
Slmllarly +le + I'erZkaAz + e + I’nZk” = 0.

Since {X,},,and {y,}, , are linearly independent. It follows thatr;=0, 1 <i<n

Hence B is linearly independent.

From this it follows that B is a basis for M; + M, = M, ®M, over R.

Hence M; + M, is a free R-modules.
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6.4.13. Theorem. Let R be a commutative ring with unity and e be an idempotent (that is, ¢ = e and
e #0,e#1). Let M = Re, then M is not a free R-module.

Proof. Since e #0, e # 1. Thus {0} = McR.

Suppose M is a free R-module. Since M =R e, so M is finitely generated R-module. Thus every basis of
M has finite number of elements. Let {x;, Xz, . . ., X} be a basis of M. now x;€ M =R e.

=x,=re, 1<i<m, reR.
Since {xi, X2, . . ., Xm} 15 @ basis of M, so each x;#0 =1, # 0

Now, 1,x1+(-17)X2 = 1211€ + (-17)12€
=prie-rirne=0 [ R is commutative]
Now -1, #0,r, # 0= x; and x, are linearly dependent, a contradiction. Therefore, the basis has only
one element, namely x; = r;e.
Now,e#0,1 = 1-e#0. l-e€R,s0(l-e)x;=(l-e)rre=ri(e—e’)=ri(e-¢e)=0.
But 1 — e # 0 and so x; is linearly dependent, again a contradiction.
Thus, M is not a free R-module.

6.4.14. Theorem. Let N be a finitely generated free module over a commutative ring R. Then all its
basis are finite.

Proof. Suppose N is generated by {xi, X,..., Xa} and {e,},_, be a basis of N and let us denote this basis
by B. We shall prove that B is a finite set.

Now, x; € N and B is a basis of N, so there exists a finite subset B; of B such that x; is a linear
combination of elements of B; with coefficients in R.

LetS= U B, , then clearly S is finite since each B;is finite.
i=1

Now, B is linearly independent, so S, being a subset of B, is also linearly independent. Let x € N be
any arbitrary element, then

X =rnxitnXy+...+1rn X, I € R

But each x; 1s a linear combination of elements of B;, so x is a linear combination of elements of S.
Hence S generates N. Thus, S is a basis of N. Now S © B and B is also a basis, so we must have

S = B. herefore, B is finite since S is finite.

6.4.15. Theorem. Let N be a finitely generated free module over a commutative ring R. Then all basis
of N have the same number of elements.

Proof. Suppose N has two basis containing m and n elements respectively. We shall prove that m =n.
Since N 1is a free module, so we must have (by a previous theorem), that N = R” and N = R”
= R™ = R".
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Let, if possible, m <n.

Let ¢ : R" — R" be an isomorphism and since ¢ is one-one and onto, so ¢ is invertible and let y =
¢ ', then y : R" — R" is an isomorphism.
Let {e, €2,..., en} and { f}, f,..., fu} be standard basis of R™ and R" respectively.
Now ¢(e;) e R", 1<i <m, so let us write
d(e)=anfitaxh+.. . +ayf, 1<i<m
that is, we have
d(e)) =anfitanfh+...+anfy

d(er) = apfitanh+...tapf,

d(em) =amfi tambh+ ... +amfs

Then, matrix of ¢ = A =
” aee- a,, |
Again, v (f)) € R™, 1< j < n, so let us write

w (f)=bije; +byer+ ... + byjem
that is, we have

w (fi) =bjie; +byes + ... + bmiem,

v (f;) =be; + bpey + ... + bmpen

l// (fn) = blnel + b2ne2 + cee + bmnem

b, b,...b,

b b,,...b
Matrix of y =B = |, 2 T2 Tom

bml bm2 .o .bmn .

Now, we see that ¢ : R™ - R", v : R" - R"™ implies that ¥ ¢ : R™ — R™ and y ¢ is identity
mapping on R™ because y = ¢ .

So matrix associated with the mapping ¢ y is identity matrix, but matrix of y ¢ is also given by BA.

Hence, BA = I, = Identity matrix of mxm.
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by by, by, dy dy; L
thatis, |: : : :
IE:IJ":l E’m]' el w n nl D D 2w
il 1 if i=
= szk a; = ..
= 0 if i#j

Similarly, AB = I,,, implies

i b 1 if i=j
a_ . =
= 0 if i#j

0 0
1 0
[:l"- 1 M ow H
(D
)

B
Let A"=[A O] and B'= {O} be nxn augmented matrices, where each of the O blocks is a matrix of

appropriate size, that is,

| by
ay a1y a, 0--0 by,
a 1 [ a1‘m l:l |:| -
A= ‘_ . E'=
- ml
Ay Qg - iy 0 0 - 0
0
Form these two matrices we note that
1 0--- 0
0 1--- 0
ArBf = ; ; ; — In
0 0--- 1 M
1 0 o 0 0
0 1 o 0 0
5 5 ! I, 0
EI]_d B'A': — 2
0 0--- 1 0--- 0 0 0
0--- 0
i 0--- 0]
So, we have
I 0
det(A'B’) =det (I,) =1 and det (B'A’) = det 0'" ol = 0.

—  det(A'B') # det(B'A")

bp- by,
by... b

L iR

ml--- L]

[Using (2)]

[Using (1)]

..(3)



96 Modules

But A’ and B’ are nxn matrices over a commutative ring so we must have det(A'B’) = det(B'A’), which
is contradicted by (3).

Hence m > n.
Similarly n> m.
So, m = n, that is, all basis of N have the same number of elements.

6.4.16. Rank. The number of elements in any basis of a finitely generated free module N over a
commutative ring R with unity is called the rank of N.

6.4.17. Theorem. Every finitely generated module is a homomorphic image of a finitely generated free
module.

Proof. Let N be an finitely generated R-module with generators xj, xa, ..., Xp.

Let ey = (0,0, ...,1,0,..., 0) bethe n-tuple with all entries 0 except the i place, where the entry is
1. Then, we know that {ej, ey, ..., e,} are linearly independent over R and generated a free module
R". Hence R" is a finitely generated free module. We shall prove that N is homomorphic image of
R". We define a mapping

¢ : R" >N by setting d)(Zi;eij = Zrixi

i=1

n

(1) ¢ is well-defined. Let x = Znei and y = ZI;'ei be two elements of R” such that x = y,that

i=1 i=1
is Z(’?_’?') e =0 = r-r =0, 1<i<n [Since e are L. 1]
i=1
= r=r,1<i<n = rx, = rx, = ox) = 6).

(i1) ¢ is homomorphism.

Letx= D re ,y= Y. r'e, andr € R, then
i=1 i=1
¢(X+y)=¢(2(7§+"i’)€,~j = > r+r)x
i=1 i=1

= Y Y% = 6+ ()

=

and ¢ (rz)= ¢ (Zn:rriei j = erl.xl. =rd(x).

i=1
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(i11) ¢ is onto. Let m = Z r.x, be any arbitrary element. Then r;e R and consider the element
i=1

i=1 i=1 i=1

X= Zrl.ei € R".Then ¢ (x)= ¢ [z riel.j = Z};xl. =m. So, x is pre-image of m. Hence ¢ is onto

and so, ¢ (R") =N, that is, N is homomorphic image of R" which is a finitely generated free-module.

6.4.18. Theorem. Every finitely generated module is isomorphic to a quotient group of a finitely
generated free module.

Proof. Proof can be obtained by using Theorem 6.4.14 and then using fundamental theorem of module
homomorphism

R" / kerp = M.
Thus, N is isomorphic to a quotient group of finitely generated free-module.

6.4.19. Fundamental Structure Theorem (or Decomposition Theorem) of finitely generated
modules over Principal Ideal Domain.

Let R be a PID and let N be any finitely generated R-module, then
N = R*®R/Rq,® R/Ra, ®..® R/Ra,

1i=1,2,.,r—1.

i+l

a direct sum of cyclic modules, where a;s are non zero non-units and a, / a

Proof. Since N is a finitely generated R-module and we know that every finitely generated module is
isomorphic to a quotient group of a finitely generated free module, so

M = R"/K.
Now, since R" is a free R-module, where R is a PID and K is a sub module of R", so we must have
K = R",wherem < n.

Let ¢ be this isomorphism from R™ to K, thatis, K = ¢ (R™). Let { e;, ez, ..., em} be a basis of R™.
Let us write

a,
a, n
dle) = €R
anl
alm
a
de,) =| "] eR
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Then, ¢ (R™)=AR", where A = (a;) is an nxm matrix. We choose invertible matrices P and Q of

order nxn and mxm respectively such that
PAQ = diag.((a}, a, ..., &, 0, 0, ..., 0), where a,|a,|...|q, -

Then we have

I

M = R"/K = R"/gR"™) R"/AR™ = R"/PAQR"

a, ]
a, O
. "R
R
= R a, :
0

0] ' R

O_

[ROR®..OR]/[Rq, ®Ra, ®..® Ry, |
R/Ra, ®R/Ra, ®..®R/Ra, DR®..®R

(n—k) times

IR

By deleting the zero terms on R.H.S., if any (corresponding to those a/s that are units) and renumbering

if necessary we obtain
M = R/Rg ®R/Ra,®..®R/Ra, ®R".

6.4.20. Application to finitely generated abelian groups. Since the ring of integers Z is a PID and
any abelian group is a Z module, so by above theorem it follows that:

Let A be a finitely generated abelian group, then

A= Z07)al®. . ®Lal

where ‘s’ is a non-negative integer and s are non-zero non units in Z s.t. a|a,|...

a, .

6.5. Torsion Element. Let M be an R-module, then an element m of M is said to be a torsion element if

rm=0 for some nonzero elementr € R. The collection ofall torsion elementsis denoted by M; or
Tor(M), so

Tor(M) = {m € M : rm=0 for some non-zero r € R}.
Also, it is known as Torsion part of the module. It is the largest torsion submodule of M.
65.1. Exercise. Prove that if R is an integral domain, then Tor(M) is a submodule of M.

6.5.2. Torsion module. A module is said to be a torsion module if its every element is a torsion element.
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6.5.3. Torsion free moldule. A module having no non-zero torsion elements is called a torsion-free
module or we can say that the only torsion element in a torsion-free module is the zero element, which
means that every non-zero element of this module is linearly independent.

Now according to the definition of Torsion part of a module, we can say that M is torsion free if its
torsion part M, is {0}.
6.5.4. Proposition. For any module M over a commutative integral domain R, the quotient module

M/M; is a torsion free module.

Proof. Let x + M; € M/M; be any arbitrary element. If x + M is a torsion element of M/M, then r.(x +
M,) = 0 for some non-zero r € R and, therefore, r.x € M;. So by definition of torsion part of M, there
exists some non-zero element a € R such that a(r.x) = 0. Then, (ra).x = 0, since R is an integral domain
and a, r are non-zero, so ra is also non-zero element of R. Therefore, x is a torsion element of M and thus
X € M. Hence x + M= M, , which is zero element of M/M,. Hence zero element is the only torsion
element of M/M; and so M/M; is a torsion free module.

6.5. Check Your Progress.
1. Let M;, M; be free R-module. Then M=M,xM, is also a free module.

2. Q is not free Z-module.

Answers.

1. First prove M;xM, =M, ® M, . Since direct sum of two free modules is again free module, the result
follows.

2. Let M = Q. We know that every abelian group can be treated as Z-module. Thus, Q is a Z-module.
Suppose M is a free Z-module. Let {x,},_ be a basis of M over Z. Let x;, X2€{X, },_. . Suppose

m m
— 1 — 2
X,=—, X,=—= where m;, my, n;, ,€ Z and n; # 0, n, # 0.
n n
1 2

m m

— 1 2 —

Now (njmy)x; + (-npm;)(x2) = nm, -n——nzm1 — =mm, -mm, =0, nm, #0,—n,m, # 0. Thus x;,
1 2

X are linearly dependent, a contradiction. Hence, basis of M contains only a single element, say x.

m
Suppose x = —-, where my, nj€ Z. and n; # 0.
nl

Now {x} is a basis of M over Z. Thus, every element of M is of the form Ix, | € Z.

Take a prime p such that p >n;

Now, lEMZQ
p

1
:>—=l><ﬁ for somel € Z.
p n,
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= n, =Imp = p/n, , a contradiction. (. p > ny)

Hence, M = Q is not a free Z-module.

6.6. Summary. In this Chapter, we discussed about various properties of modules, structures that

become module, their direct sum, rank etc. Also, it was derived that for a finitely generated free module

over a commutative ring all basis have same number of elements.
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NOETHERIAN AND ARTINIAN MODULES

Structure
7.1.  Introduction.
7.2.  Noetherian and Artinian Module.
7.3.  Hilbert Basis Theorem.
7.4.  Nil Ideal.
7.5.  Ring of Homomorphisms.
7.6.  Radical ideal.
7.7.  Check Your Progress.
7.8.  Summary.

7.1. Introduction. In this chapter the concept of ascending and descending sequences of submodules,
definitions, examples and properties of Noetherian and Artinian Modules are given. Further nil ideal and
nilpotent ideals are discussed in detail.

7.1.1. Objective. The objective of these contents is to provide some important results to the reader like:

(1) Noetherian Module and equivalent conditions for a module to be Noetherian.

(i1) Artinian Module and equivalent conditions for a module to be Artinian.

(i11)) Hilbert Basis Theorem.

(iv) Wedderburn Artin Theorem.

7.1.2. Keywords. Noetherian Module, Artinian Module, Nil Idels, Finitely Generated Module.

7.2. Noetherian and Artinian Modules. Let M be a left R-module and {M; }; > ; be a family of
submodules of M

1) The family {M; };> is called an ascending chain or sequence if

McM,cM,c..cM,cM,, c..

n+l =

2) The family {M; }i> is called a descending chain or sequence if

M oM, oM, >..oM, oM, D..

n+l =
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7.2.1. Noetherian Module.

An R-Module M is called Noetherian if for every ascending chain
McM,cM,c..cM,cM,, c..
of submodules of M, there exists a positive integer K such that
Mk = Mg+1 =Mk =. ..

that is, Mg = Mg+, forall1>0.

-OR-
Every ascending chain of submodules of M becomes stationary after a finite number of steps.

-OR-
Every properly ascending chain M, c M, EM 1S of submodules of M terminates after a finite number
of steps, that is, every properly ascending chain of sub modules of M is finite.
7.2.2. Theorem. For an R-module M the following conditions are equivalent:
(i) M is Noetherian.
(i1) Every non-empty family of R-modules has a maximal element.
(ii1) Every sub-module of M is finitely generated.
Proof : (i) = (ii)
Suppose M is Noetherian R-module and let p = {M, } .., be anon-empty family of sub-modules of M.

Since the family p is non-empty so let M, be any member of p.
If M, is maximal element, then we are done, otherwise there exist M, € p such that
M, &M P
Again, if M, is maximal, then we are through, otherwise there exist M, € p such that
M, &M P
Now, p has no maximal element is equivalent to saying that there exists an infinite ascending chain
M, €M, M, cC.

of sub-modules of M, which is a contradiction as M is assumed to be Noetherian. Hence the family p

must have a maximal element.

(i) = (iii)
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We are given that every non-empty family of sub-modules of M has a maximal element. Let N be a sub-
module of M and we shall prove that N is finitely generated.

Let, if possible, N is not finitely generated. For any positive integer & let a, aa,..., ar € N.
Then N # <ay, a,..., ar>. Choose ai+1 € N such that aj+1 ¢ <ay, as,..., a>.

We then obtain an infinite properly ascending chain
<a1>e<a,a>% ... G <ap,ay..,ar>%..
of submodules of M.

Let us denote Ny =<ay, az,..., ar >, then Ny & No G...GC Ny & ..

Let family of all these sub-modules be p, thatis, p = {Ni}, £ > 1, then by the given hypothesis p has

a maximal element, say L.

Now, L € p = L = N,, for some m. But L = N,, & N,, +; so L is not a maximal element, a
contradiction. Hence N must be finitely generated.

(>iii) = (@)
Suppose every submodule of M is finitely generated. We shall prove that M is Noetherian.

LetN; < N, = N3 € ...c Ny < Niy ... be an ascending chain of sub-modules of M.

Consider N = UNi . We claim that N is also a sub-module of M.

Letx,y € UNi and 7 € R. Thenx € N, and y € N, for some integers » and s.

Since either N, < N or Ny — N,, therefore both x and y lie in one sub-module N, or N, and hence x—y

and rx lie in same sub-module. However, both N, and N, are subsets of N, so x—y, rx € N, and hence N
1s a submodule of M.

Now, by (iii), N is finitely generated. So there exist elements a,, ay,..., a, € N such that

N=<ay, ay,...,a,>. Now foreachj, 1< j < n,q; eN= UNI.

= @ € N, for some natural number A,
J

Let £ = max {/11 s Ay geens /ln} , then clearly a; e Ny, 1 < j < n thatis,, ai, an,..., d, €Ny

But N =<a, ay,..., a,>, so N is smallest submodule containing a, ay,..., a, .

This implies N < Nj . Also Ny < N. Hence N = N; and so Ny = Ny 1 = N; 42 = ..., therefore, M is a
Noetherian R-module.
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7.2.3. Definition. If the left R-module M is noetherian then M is called a left-Noetherian module.
Similarly, if a right R-module M is Noetherian then M is called a right Noetherian module.

7.2.4. Finitely Co- generated Module.

Let M be a left R- module then M is called finitely co- generated if for any non- empty family {M,}=£
of sub modules of M, having {0} intersection, that is, if ﬂ M, ={0}. Then, there exists Ai, Ay, ..., Ay €

AeA

A such that ﬂle ={0}.

i-1
7.2.5. Artinian Module.
Let M be a left R- module. M is called left- Artinian if for every decreasing chain

M,oM,>..oM,> ..

we have My, = My, = -+ = My,; = -+ for some k € N, that is, have M}, = M,;; for all i > 0, that is,
every descending chain of sub modules of M becomes stationary after a finite number of steps.
OR

Every properly descending chain of M, >M,>M,..oM, >... of submodules of M is finite.

OR
Every properly descending chain of sub modules of M terminates after a finite number of steps.
7.2.6. Theorem. For an R-module M the following conditions are equivalent:
(1) M is Artinian.
(i1) Every non-empty family of sub-modules of M has a minimal element.
(ii1) Every quotient module of M is finitely co-generated.
Proof. (i) = (ii)
Let us suppose that M is Artinian and let p = {M R } . ., beanon-empty family of sub — modules of M.

We shall prove that p has a minimal element. Now p # ¢ so there exist M, € p, then either M, is

a minimal element of p or there exists M, € p suchthat M, QX M, .
Again, either M, is a minimal element of p or there exists M, € p such that
M i 2 M P

If this process continues indefinitely (that is, p has no minimal element) then we get an infinite
properly descending chain M, 2 M, 2 M, ... of sub-modules of M, which is a contradiction since M

is given to be Artinian. Hence p must have a minimal element.
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(i) = (iii)
Let us suppose that every non-empty family of sub-modules of M has a minimal element. We shall

prove that every quotient module of M is finitely co-generated. Let N be a sub-module of M. Consider
the quotient module M/N .

Let {M,/N} _ bea family of sub-modules of M/N such that (7] (M,/N) = {N}

AeA

Now, {N}= (] (M,/N)= (ﬂM j/N:> OM];N (1)

AeA

Let p = {M,}, _, ,where M, ’s are sub-modules of M and let
p' = {A : A is the intersection of finite number of sub-modules of M in p}

Then clearly p < p' thatis,, M, ep’ ¥V 1 eA.

Now p' is a family of sub-module of M so by the given condition (ii) it must have a minimal element

say, A.
Then, A=M, "M, .N M, , 4, €A

Let M, € p be any member, then ANM, =M, " M, N M, Nn..NnM, € p', being finite
intersection of members of p .
Now A N M, c A. But A is minimal element of p' so ANM,=A

= Ac M,V 1eA

= Ac (M, =N [By ()]

Again, N = ﬂMi c ﬁMi[ZA.HenceA:N: ﬁMli
1 i=1 i=1

i=1

Now, ﬁ(Mﬂi /N) = (ﬂlMl j/N = N/N = {N}.

Hence, there exist a finite sub-family {M N / N}n of {M,/N} _ such that
i i=1 S
(1M, /N) =1y
i=1
Hence every quotient module of M is finitely co-generated.

(i) = ()
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Let us suppose that every quotient module of M is finitely co-generated and shall prove that M is
Artinian. Let M; © My © ...DM; D M+ 5... be a descending chain of sub-modules of M.

Let N = ﬂMi . Then N is a sub-module of M and N ¢ M, for all i. Consider the family {M,/ N},- of

sub-modules of M/N . We see that

(M/N) = (ﬂMj/NZN/NZ{N}
Since by the given condition (iii), M/N is finitely co-generated therefore there exists a finite sub-

family, say, {M,, /N}::1 of {M,/N} such that ﬂl M, /N = (N}

Let k =max. {n, m,...,n,} then
NM, = M,
o

since the chain is descending.

Now {N}= ﬂ(M/N) _ [HMJ/N = M, /N and so M;=N.
P i

But then Nc M, , . M, =N gives that My =M+ = Mg = ...

k+j =
Hence, the R-module M is Artinian.
7.2.7. Proposition. Let M be a left R-Module

1) If M is Noetherian then every submodule and factor module of M is also Noetherian.
2) IfN is a submodule of M such that bot h N and M /  are Noetherian then so is M.

Proof. 1) We know that “a R-module M is Noetherian iff every sub-module of M is finitely generated.”

(1) Let N be a sub-module of M then N must be finitely generated. Now let N; be any sub-module of N
then it is also finitely generated as every sub-module of a finitely generated module is finitely generated.
Hence N is Noetherian.

(ii) Let M/N be any quotient module of M. To prove M/N Noetherian, we shall prove that every sub-
module of M/N is finitely generated. So let A/N be any submodule of M/N, where A is a sub-
module of M. Now A is a sub-module of M and M is Noetherian, therefore A is finitely generated.

Suppose A = <xj, X,,....x, > .We claim that A/N =<x; +N,x,+N, ..., x, + N>
Letx+N € A/N be any element.

Then, x € A = xX=rxitrxt.trnx,r, €R

= x+tN=(rx +rnxt.trmx,)+N
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=71 (x1+N) + 7, (xa +N) +...+ rn (x, + N)

Hence A/N = < x*+N, x, +N, ..x,tN >, that is, A/N is finitely generated. Therefore, M/N is
Noetherian.

2) To prove that M is Noetherian, we shall prove that every sub-module of M is finitely generated. So,
let A be any sub-module of M. Then A + N is also a submodule of M containing N. Therefore AH\%V

is a sub-module of M/N . Since M/N is Noetherian, therefore, A*% must be finitely generated.

Now, we know that AH\%\/ ~ A/ANN

= A/A NN is also finitely generated.

Also, A NN being a sub-module of Noetherian R- module N, is also finitely generated.
Suppose ANN = <xy, x2,..., Xy > and A/ANN =<y + ANN,»» + ANN,..., v, + ANN >,
where x;, y; €A.
We claim that A = <Xy, X2.....6m, Y15 V2,eeesVn >
Letx € A be any arbitrary element, then

x+ANN e A/AnNand A/ANN =<y +ANN,y, + ANN,...p,tANN >

so  x+ANN= Z":rj(yj+Am|N

Jj=1

), rjeR

nnA+AmN
2.7

j=1

= (x - Zr_}.yj}rAmN = ANnN

Jj=1

= x=Y ry,eAnN.

Jj=1

n
Since A NN = <Xy, X2....,.Xn >, SO X — Z vy, =sixt s bt suX, sieR
j=1

= X = Dy, + sy
j=1 i=1
= A=<XL XX V1 V2V
Hence A is finitely generated and therefore M is Noetherian R-module.

7.2.8. Proposition. Let M be a left R-module and N be a sub module of M. Then M is Artinian iff both
N and M / N are Artinian.

Proof. First suppose that both N and M / N are Artinian.
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We shall prove that M is Artinian.

Let A 2 A, ... 2 A, 2 A, +1 be a descending chain of sub-modules of M. We shall prove that this

chain becomes stationary after a finite number of steps.

Now, A;is a sub-module of M and N is also a sub-module, so A;+ N is also a sub-module of M and N

< A;+ N for all 7.
Since, A; D A;+150 A;+ N D> A+ N for all i.
= A +N/N o A, +N/N,

where A, +N/N is a sub-module of M/N for all i.

Hence, we have a descending chain A, +N/N o A, +N/N o..2A,+N/N o... of submodules of

M/N .
Since M/N is Artinian, so there exist a positive integer  such that
A +N/N=A ,+N/N=A ,+N/N=_.
that is, A, +N/N=A__+N/N Vix>0
= A+N=A_.+N Vix0

Now, again A; NN is a sub-module of N and since A; © Aj;1.

We have 4 "N D 4, "N forall i. Hence, we have a descending chain

A]ﬂN o Az ﬂN QQA,, ﬂN D

(1)

of sub-modules of N. However, N is artinian, so there exist a positive integer s such that

AsNAN=A;nNnN=A;o "N=...
that is,, A,AN=A; AN forall i > 0.
Let k = max{r, s}, then by (1) and (2), we must have
AN =A;+;+N forall i > 0
and ArNAN=A,;, AN forall i> 0.
We claim that A, = Ay +; forall i> 0.
Let x € Aj be any arbitrary element. Then xe Ay c Ay N =A;; + N
= x=y+z forsomey € A,z € N
= x—y=zeN.
Now,x € A,y € Aii CAr =>x—y €A

Hence x—=y €e AknN=A; NN

2)

3)
(4)

[By(3)]

[By (4)]
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= x—y € AN N CAgsi
= x—y € Apand y € Ags
= x=y+ty=x €Ap.

So, Ay € A, also Ag € A
Hence, we have A, = Ay for all i>0.

Therefore, the considered chain of sub-modules of M becomes stationary after a finite number of steps.
Hence M is Artinian.

Conversely, suppose that M is an Artinian module.
(1) Let N be any sub-module of M. We shall prove that N is Artinian.

Suppose that Ny 5N> © N3 5...0 Ny © Ni+1 D... be a descending chain of sub-modules of N. Since

sub-modules of N are also the sub-modules of M, it follows that above chain is a descending chain of
sub-modules of M. Since M is Artinian, therefore, there exists a positive integer k£ such that

Ne=Ni+1 =Ne2 = ...
Hence N is Artinian.
(if) Let M/N be any quotient module of M. To prove M/N Artinian, let us consider a descending chain
of sub-modules of M/N, that is,
MI/N -) MZ/N - M3/N D..D Mk/N D...
Here, M; are sub-modules of M and since M, /N2 M, ,,/N 2,s0 M; © M;4;.

Thus, we have a descending chain M} © M; D...2 M; D ... of sub-modules of M. Since M is Artinian,
so there exists a positive integer k£ such that My = My +; = My 4, = ... and then, we have

Mk/N = MkH/N = M“z/N =..
Hence, M/N is a Artinian R-module.

7.2.9. Remark. Since every homomorphic image of a module is isomorphic to some quotient module.
Thus, if the module is Noetherian (Artinian), then its homomorphic image is also Noetherian (Artinian).

7.2.10. Result. Let M; and M, be R-modules and N; and N, be submodules of M; and M, respectively.
LetM=M;xM,={(x,y): xe M,,yeM,}. Define addition and scalar product as

X1,y T (X2,y2) = (X1 + X2, y1 T ¥2)

r(x, y) = (x, 1y).
Then, M is a module with respect to this addition and scalar multiplication.

Also, let N = Ny xNj. Then, N is a submodule of M. Consider the factor module
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M/ _MxM
%\7 = %\/1 XN,
Consider the quotient module M%f and M%, and let M%\f xM%\, be their direct product. Define a
1 2 1 2

map ¢: M, xM, _)M%VIXM%\Q by

P(x,y)=(x+N,y+N,).

It is easy to see that ¢ is the homomorphism of left R-modules.

Now, ¢ is onto. For, let (x+N1,y+N2)eM%V XM%V , where xe M, and yeM,. Therefore,
1 2
(x,y) €M, xM, and ¢(x,y)=(x+N,,y+N,).

Also, let (x,y) € Ker¢g = M, xM,. Then,

.3 = zero of Myl s Mo/l — N HE e Ny V) = (V)
iff x+N, =N, and y+N, =N, iff xe N, and ye N,

= Ker¢= N, x N,.

.M xM M M
Hence, by fundamental theorem of homomorphism ! %Vl <N, = %Vl X %Vz'

Generalising this we get

M xM,x..xM, M M,/ M,
N, xN,x..xN, = /N, N, N,

Remark. If M; is a left R-module, then M%/[ = {0}.
1

7.2.11. Proposition. Let M, My, ..., My be left R-modules.
(1) If each of M; is Noetherian, then so is M, xM, x..xM, .
(i1) If each of M; is Artinian, then so is M|, xM, x..xM, .

Proof. We shall prove the result by induction on k.

Suppose k = 2. We know that "If N is a submodule of M, then M is Noetherian iff both N and M/N are
Noetherian."

Now, MIXM2M1X{O};M%/[1><M%)};{O}xM%)};M%)};Mz.
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M, xM,
M, x{0}

Since M, is Noetherian, therefore is Noetherian.

M, xM,

Now both M, x{0} and M, x {0}

are Noetherian, therefore, M, xM, is also Noetherian.

Suppose k > 2 and the result holds for modules M, M, ..., My.;.

Now M, xM,x..xM, , is Noetherian and My is also Noetherian, therefore by above discussion

M, xM, x...x M, is Noetherian. Hence the Proof.

k
7.2.12. Proposition. Let M;, M,, ..., My be Noetherian submodules of M, then ZMI. is also
i=l
Noetherian.

Proof. We know that finite direct product of Noetherian Modules is again Noetherian. Now, each of My,
M,,..., My is Noetherian, therefore, M, x M, x...x M, is Noetherian.

k
Define a map ¢: Mlxsz...ka—>ZMi by

i=1
P(X, Xy X, ) =X, + X, + X, X, €M,
Now, ¢ is a homomorphism:

Let (X,%y,05%, ), (Y15 Yoo ¥, ) € My xM, x...xM, . Then,
¢((x17x29'--9xk)+(Y1’YZ"“9YI¢)):¢('xl+YI’x2+YZ"“’xk+Yk)
k k k
:Z(xl.+yl.):zxi+2yi
i=1 i=1 i=1

= P(X), X500 %) F DY) Y200 Yy )-
k k
and @(r(x,,x,,....,x,)) =P x,rx,,....,T X, ) = eri = ’”in =7P(X), Xy yees X, ).
i=1 i=1

Hence, ¢ is a homomorphism.

¢ is onto:

Let xe M| xM,x..xM, . Then, x =x; + xo +...+ Xy, x eM,.

Now, (X,,%X,,....,X,) € M, xM,x..xM, and §(x,,x,,...X%,) =X +X, +..+Xx, =X.

Thus, ¢ is onto.

k
Hence, ZM ; 1s a homomorphic image of a Noetherian module M, xM, x...x M, .

i=1
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Therefore, M, +M, +...+ M, is Noetherian.

Exercise. If the submodules M,,M,,..., M, are Artinian, then so is their sum.

7.2.13. Left Noetherian Ring. Let R be a ring. R is called left Noetherian, if left R-module R® is
Noetherian.

7.2.14. Right Noetherian Ring. Let R be a ring. R is called right Noetherian, if right R-module Ry is
Noetherian.

7.2.15. Noetherian Ring. If R is both left as well as right Noetherian, R is called Noetherian ring.
7.2.16. Remark. Suppose R is a commutative ring, then it is clear that R is left Noetherian

iff R is right Noetherian iff R is Noetherian.

7.2.17. Artinian Ring. Let R be a ring. Then,

(1) R is called left Artinian if Left R module R® is Artinian.

(2) R is called right Artinian if right R module Ry is Artinian.

(3) If R is both left as well as right Artinian, R is called Artinian ring.

(4) If R is a commutative ring, then it is clear that R is left Artinian iff R is right Artinian iff R is
Artinian.

7.2.18. Proposition. Let R be a right Noetherian ring and M be a finitely generated R-module, then M is
also Noetherian.

Solution. We know that finite direct product of Noetherian left R-Modules is again Noetherian,
therefore finite direct product of R®'s is also Noetherian.

Therefore, M'=R® x R® x...x R® = R"™ is Noetherian.

Now, M is finitely generated R-module, thus there exist x;,Xx,,...,x, € M such that
M= Zin = <xl,x2,...,xn>
i=1

Now, R™ =M'={(r,n,...,r,): 1, € R} is Noetherian R-module.
Defineamap ¢: M'— M by

P(1,1yyeen B =1X, + 15X+ 41X,
Then, ¢ is a homomorphism:

Let (,%,....1,) € M" and (s,,S,,...,s,) € M. Then,
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P11, 1) +(815,85,500,8, ) =1 +8,, 1, +8,,..,7;, +8,)
n n
=) EX 48X,
i=1 i=1
=1, 75,..,7,) +P(8,,8,,...,8,).

Let € R®, then
P(r (1,155 1,) = P(P1, 1Ty oy 1)) = erixi = rZrl. X; =1 @1, 1y, 1)
i=1 i=1
Hence, ¢ is a homomorphism of left R-modules.

Let x € M , then, there exists #,7,,...,7, € R such that x = Zrl. X; .
i=1

n
But then (7;,7,,...,7,) € R™ and @(r;,7;,....7,) = Zri X; = X.
i=1

Hence, ¢ is onto.
Thus, ¢: M"— M is epimorphism that is, M is homomorphic image of M' and so, M is Noetherian.

7.2.19. Exercise. Let R be a left Artinian ring and M be a finitely generated left R-module, then M is
also Artinian.

Proof. Proof of this exercise is similar to that of the above if we change Noetherian by Artinian.

7.3. Hilbert Basis Theorem. Let R be a left Noetherian ring then so is the polynomial ring R[x] and
conversely.

Proof. Let the ring R be left Noetherian and let R[x] be the polynomial ring over R in the indeterminate
X.

We shall prove that every left ideal of R[x] is finitely generated as a left R-module.
Let A be a left ideal of R[x].
If A = {0}, then clearly it is finitely generated left R[x] module.
Suppose A # {0}. Let

Iy = {a R :ais leading co-efficient of some polynomial of degree k in A} U {0}.
Here k£ >0. We prove that I is left ideal of R.

Clearly, I#¢ as 0€el,.
Leta,be/, .Ifa=b,thena-b=0e/,.

Suppose a#b=>a—-b#0.
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Then either a #0 or b#0.
1 k-1

If a#0, then there exist f(x) = ax* +a'x*'+..e 4. Now, a #0=—-a #0.

Now f(x)e A and A is left ideal.
=>-fx)eA=>-ael,.

Similarly, if b#0=>-bel,.

(i)if b=0,then a—b=acl,.

(ii) if a=0, then a-b=-bel,.

(iii) if a# 0, b#0 and a—b#0. Then,

f(x) - g(x) = (a-b)x* + (a'-b)x*"' +...e 4,

where g(x) = bx*+b'x"+...e 4

=a-bel,.
Hence, I is a subgroup of R under addition.
Let reR and ael,.
If ra=0.,then rael,.
If ra#0,then a#0.Now, re Rc R[x] and f(x)e 4
= rf(x) e A.
Now, 7f(x)=rax* +ra'x"" +... is of degree k so rael,.
Hence, Ii is a left ideal of R.
If ael, and a#0, then
xf (x)=ax""' +a'x* +...e Ais of degree k + 1.

=ael,,.

Hence, I, c1,,, Vk=0.

Now, we have an ascending chain /[, c I, c/, c...c/,,, <... of left-ideals of R.

Since R is left Noetherian, therefore there exists a positive integer d such that

1,=1,. Yi>0.
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Since R is left Noetherian, therefore each ideal of R is finitely generated as a left R-module. Let
I, :<ak1,ak2,...,akn >, that is, 7, :ZRakj.
Jj=1

Now, by definition of Ii; there exists polynomial

1

_ k 1 k- .
fi, ®¥)=a, x" +a, x +..,wherel < j<n,.

=017,0)

d,n
k=0, ;=1 k=0

Let T = { 1 (x)}

j=t
Let B = <T > (The left ideal generated by T)
d n
B=Y"3Rixlf, (x)
k=0 j=I
We shall prove that A = B.

Let f(x)e A and suppose deg(f(x)) =n. We write
f(x) = ax" +a'x"" +...
We prove the result by induction on n.

Ifn =0, then f(x) = ax’ (a= 0) and ae I,.

1y
I, = <a01,a02,...,a0% > = ZR%]'
Jj=1

= a=na, +nhay+..+1, 4, , 1, €R

:Zolrjfoj'(x)

=>acehB,

thatis, f(x)e B

Letn >1 and suppose that the result holds for all polynomials in A. that is, g(x) € 4and deg(g(x)) <n.
= g(x)eB.

Now eithern>d orn <d.

Case-l. Suppose n>dand ael, =1, and

1,=Y Ra, [ k=d]
=l
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ny

=1,=2 ra,.
j=1

Consider the polynomial
g(x)= erx"_dj;j(x) €B.
J=1

Now, f,(x)is a polynomial of degree d with leading co-efficient r;a,,.

Hence, the leading co-efficient of g(x) is era 4 =a and it is a polynomial of degree n.
j=1
Now g(x)e B and Bc 4
o f(x)—g(x)e A and it is a polynomial of degree n - 1 and hence by induction hypothesis
f(x)-g(x)eB.
Since g(x) € B, it follows that f(x) € B. This completes the induction.

Case-II. n <d.

n/n
Now, [, = ZR% and ael,

j=1

nm
=a=)ra,, 1R
Jj=1

Consider g(x) = Zm: r.f,(x) € B.

J=1

Now, g(x) is of degree n and leading co-efficient is irjam =a.
=
Hence f(x)—g(x)e A4 is of degree atmost n - 1 and hence by induction hypothesis f(x)—g(x) € B.
Since g(x)e B= f(x)e B.
Hence, in either case A < B.
But B c A.
= A =B.

Since B is finitely generated, therefore A is finitely generated.
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7.3.1. Proposition. (Converse to Hilbert Basis Theorem) If R[x] is left Notherian, then so is R.
Proof. Let I be the ideal of R[x] generated by x over R[x].

that is, [ = <x>= R[x]x.

Then I is an ideal of R[x].

Defineamap f:R— R[x][ by

flay=a+ 1L
Now, fla+b)=a+b+I=(a+1)+ (b+1)=1f(a)+ f(b)
and f(ab) =ab + 1= (a + I)(b + I) = f(a)f(b).
Thus, f is ring homomorphism.
Now, let f(a) = f(b)
=a+l=b+I
= a-b+I=1=R[x]x
—=a-bel=R[x]x
= a- b =f{(x)x for some f(x) € R[X]
= f(x)/a-b.
If a+#b, then deg(a - b) = deg(f(x)) + 1.
= 0=deg(f(x)) + 1, a contradiction.
Thus, a =b.

Hence f is one-one.
Let g(x)+1 € R[X%, g(x) e R[x].
Suppose, g(x)=b, +bx+...+b,x"

=by + (b +byx+...+b x"")x

=b, +h(x)x

=g(x)+1=b,+h(x)x+1 =b,+1. [ h(x) e R[x]=h(x)x €]]

Now, b, eR and f(b,)=b,+1=g(x)+1.
Hence, f'is onto.
Therefore, f is an isomorphism of ring R. that is, R = R[x% .

Since R[x] is left Noetherian and a factor ring of Noetherian is again Noetherian. It follows that R is
Noetherian.
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7.3.2. Theorem. Let R be a left Noetherian ring and x,,Xx,,...,x, be n independent indeterminants. Then,
R[x,,x,,...,x,]is also Noetherian.

Proof. We know that R is left Noetherian iff polynomial ring R[x] is Noetherian.

We prove the result by induction on n.

If n =1, then, R[x,] is left Notherian.

Ifn =2, then, R[x,,x,]=R[x,][x,], is left Noetherian, since R[x,] is Noetherian.
Suppose that n > 2 and R[x,,X,,...,x, ,]is left Noetherian.
Then, R[x,,x,,...,x,]=R[x,,X,,...,x,,][x,] is left Noetherian.

This completes the proof.

7.3.3. Theorem. Let S be a sub-ring of R such that 1€ R = 1€ S. Suppose S is left Noetherian and R is
generated by finite number of elements as an algebra over S. Then, R is also left Noetherian.

Proof. Let x,,x,,...,x, € R and R is generated by x,,x,,...,x, as an algebra over S, that is, every element

of R is a polynomial function in the variables x,,x,,...,x, with co-efficient in S, that is, R[x,,x,,...,x, ].

Since S is left Noetherian, by above theorem, S[x,,x,,...,x, ] is left Noetherian and so is R.

7.4. Nil Left Ideal.

Let R be a ring and I be a left ideal. If given a € I, there exists a positive integer n depending upon 'a'
such that " =0, then I is called nil left ideal of R.

If a e Rand a" =0 for some positive integer n, then a is called nilpotent element of R. Thus, a left ideal
I of R is nil if every element of I is nilpotent.

7.4.1. Nilpotent Ideal.

A left ideal T of R is called nilpotent if there exists a positive integer n such that I" = {0}. that is, for
every aj, as,...,an € I,

ar.a...a, = 0.
In particular, for every a€l,

a.a..a=0,thatis,a"=0
—

n times

that is, a is nilpotent element of R. Hence, a nilpotent left ideal is a nil left ideal.
7.4.2. Theorem. In a left Artinian ring, every nil left ideal is nilpotent.
Proof. Let R be a left Artinian ring and I be a nil left ideal of R.

We shall prove that I is nilpotent.



Abstract Algebra

119

Consider the decreasing chain / o 1° 21’ o...01" o 1™ o... of left ideals of R.
Since R is left Artinian, there exists a positive integer k such that I = ! =_..
thatis, /* =1"" Vix0.
Let) =15 Then, J is left ideal of R such that P=rlk=1r=y.
We claim that J = {0}.
Suppose J# {0}.
Let £ = {A : A is left ideal of R contained in J such that JA# {0}}
Now, JJ =J*=J# {0} and J is left ideal of R contained in J.
=>Jef=£#0.
We know that if R is left Artinian, then every non-empty set of left ideals of R has a minimal element.
Let A be the minimal element of £ such that JA# {0}.
Hence, there exists a(# 0) € A such that Ja# {0}, otherwise JA = {0}.
Also, a€ A and A is left ideal of R contained in J.
=>B=JacAcJ.
Thus, B is a left ideal of R and
JB=JJa=Ja=B= {0}.
= Bef.
Since B < A4 and A is the minimal element of £ .
S B=A.
that is, A = Ja = B.
Now, ae A=Ja.
= a=xa forsome xeJ.
Now, a = x(xa) = x’a, a simple induction shows thata=x"a Vn>1.
Now, x € J < I implies that x is a nilpotent element.
Let m be a positive integer such that x™ = 0.
Then, a = x"a = 0a =0, that is, a = 0, a contradiction.
Thus, J = 0, that is, k= {0}, that is, I is a nilpotent left ideal of R.

Note. A ring with unity is called a division ring if every non-zero element of R is invertible.
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7.4.3. Proposition. An Artinian domain is a division ring (Skew-field).

Proof. To prove that R is a division ring, we shall prove that every non-zero element of R is invertible.
Let a € R be a non-zero element.

Let 1, = <ak> = Ra", that is, left ideal of R is generated by ak,

Now, if y € s =y =ra“" = (ra)a“ € I, r € R, thus /,, <[, Vk>0.
So, we have a decreasing chain

I,o,2..01, 201, >..

of left ideals of R.
Since R is left Artinian, so there exists a positive integer k such that
I, =1, Viz0
that is, <ak> = <ak+i> Vi>0.
Now a* e <ak> = <ak+1>
= a" =ra"" for some r e R
=d" =rad"
= (I1-ra)a" =0.
Now, R is a division ring and a # 0= a" #0 and therefore 1—ra=0 , that is, ra =1, that is, every
element of R is left invertible. By the same reasoning, there exists b € R such that 1=>r.
Then, a =(br)a =b(ra)=b.1=>.

Hence, 1 is the inverse of a and hence R is a division ring.

7.4.4. Prime Ideal. Let R be a ring. An ideal P of R is called a prime ideal if given ideals A and B such
that AB — P implies either Ac P or BC P.

Remark. In a left Artinian ring every prime ideal is maximal.

7.4.5. Theorem. Let R be a left Noetherian ring. Every ideal I of R contains a finite product of prime
ideals.

Proof. Let R be a left Noetherian ring. We shall prove that every ideal of R contains a finite product of
prime ideals. Let

£ ={I:1isideal of R such that I does not contain a finite product of prime ideals}.
To prove the result, we prove that £ = ¢.

Suppose £ = ¢.
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Since every ideal is a left ideal and R is left Noetherian, therefore £ must have a maximal element, say 1.

Now, e £, so I is not prime ideal, so there exist ideals A and B of R such that the product AB </
implies neither Ac I nor Bc 1.

Consider the ideals, I; =1+ A and I, =1 + B.

Since I is maximal ideal of £, therefore I; and I, ¢ £.

Hence there exist finite number of prime ideals, say B,B,...,P, and P, P,,..., P such that
PPR..P,cl and PP ..P' c1,.
Now, PP,..P,P'P ..P' c LI,

Let xell,, then x = Z vz, v, €l,z el,.

finite
Now, y,€l,=1+A=y =c +a, where c,el,a,€ 4
and z,el,=1+B=2z =d. +b where d, el,b,eB.
Then, y,z, =(c, +a,)d,+b)=c,d,+cbh +a,d+ab el [.c,d e€l,a, € Ab,e B& ABC 1]

Hence, x = Z viz,el.

Sfinite

From this, it follows that BP..P,B'P,...P/ < I, that is, I contains a finite product of prime ideals, a

contradiction and this contradiction proves that £ = ¢, that is, every ideal of R contains a finite product
of prime ideals.

7.4.6. Boolean Ring. A ring R is called Boolean Ring if x° =x V x € R. Suppose R is a Boolean ring,
then x* =x V xeR. Then
(x+3)’ =(x+y)
=Sx+y Fxp+x=x+y
=S>x+y+xy+yx=x+y
=>xy=—yx Vx,yeR.
Also, (x+x)* =(x+x)
=>x+x=0
=>x=—-x Vxek.
Now, xy =—xy = —(-yx) = yx.

Therefore, R is a commutative ring.
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Remark. Let R be a Boolean Noetherian ring, then

R;%Zx%zx...x%z

and so if a Boolean ring which is also Noetherian, then number of elements in R is 2" where n is a
positive integer.

Remark. If a,b € R (ring) such that ab =1 and ba # 1. Define e; =b""'a’" —b'a’.

0 if j#k
We shall prove that (i) e,e,, = { lf ],

e if j=k
(ii) e, #0
(iii) e, #1.

We have, e e, = (b""'a’" =b'a’ )b 'a"™ —b"a")
e B ) N N R . N APy N
Suppose j # k. Then, either j >k or j<k.
First suppose that j > k.
= j-1>k-1.
NOW, eijekl — bi—laj—kak—lbk—lal—l _biaj—kﬂak—lbk—lal—l _bi—]aj—l—kakbka/ +biaj—kakbkal
Since a"b" =1 Vm=0.
L e, = P N X e R B N O e Ny A e
— pi\ gtk i g itk _ piel ik i ik
Similarly, we can prove that e,e,, =0 if j<k.
Suppose j =k, then
e, =ee, = b'a’'b’a"™ —b'a’ba" —b"a’ b a’ +b'a’ba’
b _bd —bd 1 bd =bd T — b = e,.
0 if j#k
e if j= k-

(ii) Take f; =e,.

Hence, ¢, :{

Then, f.f, =¢e, =€, = f.
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= f, is idempotent.
Suppose f; =0, then
fi=e,=b"'a"' -b'a' =0
=b"'d" =bd
=a b ad'b" =a"'ba'b™
= 1=ba, a contradiction.
Hence ¢, #0.
(iii) Suppose f, =1. Take j#1i, then
fifi=ef, =1 (e =1)
Again, f.f, =e,e, =0. [vi#J]
Hence f,=0,a contradiction.

Hence, e, #1.

7.4.7. Theorem. Let R be left Noetherian ring and a,b € R such that ab =1, then ba =1.

Proof. Let R be a left Noetherian ring and a,b € R such that ab =1. We have to show that ba =1.

Suppose that ba #1. Now, ab =1
= a(ab)b=ab
=a’b’ =1.
A simple induction shows that a”"b" =1 ¥V m>0.
Define, ¢, = b’ —ba’. (i=1,j21)
Now, as shown in above remark
0 if j#k
€€y = P
e if j=k
e, #0and e; #1.

Define, f, =e, and let I, = Rf, + Rf, +...+ Rf,.

Then, Iy is a left ideal of R and is contained in Ii+; V £ >1.
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thatis, /, =/, Vk=1.

Now, f,.,€Rf,,, cRf,+Rf,+..+Rf,,, =1,,.

Suppose, f,,, €l,. Then, f,,, =rf +1f,+...+7 f, where r, € R

= featen =hSiSfoa T fofia ot 0SS =0 [ /S =0if r#5]

= f,., =0, a contradiction. [ " £, is idempotent]

14

Hence 1, S

Hence, we get an infinite properly ascending chain

lL,cl,clc..cl,cl,, c..
# #* * # * #*

of left ideals of R, a contradiction because R is left Noetherian.
Hence, ba=1.

7.4.8. Theorem. Let R be a Noetherian ring having no non-zero nilpotent ideals. Then R has no non-
zero nil ideals.

Proof. Let, if possible, A be a non-zero nil ideal of R.

Let p = {/(a):a e A, a# 0} be a family of left annihilators of all non-zero elements of A. Since
each / (a) is a left ideal of R and A # {0}, so p is a non-empty family of left ideals of R. Since R is a

Noetherian ring, so p must have a maximal element, say, / (a).

Now, let x € R be any arbitrary element, then ax € A [ Ais anideal of R]

But A is a nil ideal so ax must be a nilpotent element that is, there exist a smallest positive integer £ such
that

(@) =0 = (ax) (ax)"' =0 = ax € {((a0)"") (1)
Now, we see that (ax)" # 0 and (@) €A = [ ((a0)"”) € p
Now, we prove that /(a) < / ((ax)*™)
Letyel(a) = ya=0 = (ya)x=0 = y(ax) =0
= ya) ' =0 =y e I ((a)) = la) < I ((ax))
But /(a) is a maximal element of p , so [(a) = /((ax)"") 2)

By (1) and (2), we have ax € l(a)
= axa=0V xeR

= aRa=0
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LetJZRaR,then,JZZRaRRaRgRaRaR [*"RR < R]

=R (@Ra)R={0}
that is,, J is a nilpotent ideal of R.
But R has no non-zero nilpotent ideal, so we must have

J= {0} that is,, RaR = {0} 3)
Now, consider the ideal

B=<a>=Ra+aR+RaR+aZ
Let D=Ra+aR+RaR=Ra+aR [By-(3)]
Then, D2=(Ra+aR)(Ra+aR)=RaRa+aRRa+RaaR+aRaR

c RaRa+aRa+RaR+aRaR[" R? cR, RaaR cRaR] = {0}

as R a R =a Ra =0, that is, D is a nilpotent ideal of R. But R has no non-zero nilpotent ideal, so we
must have D = {0}

Hence, we obtain B=aZ

Now, @ € A and A is a nil ideal so ‘e’ must be a nilpotent element that is, there exists a smallest
positive integer ¢ such that @’ = 0.

Then, B'=aZ .aZ ..aZ (t times) = a’ Z = {0}, that is, B is nilpotent ideal of R. But R has no non-
zero nilpotent ideal, so B = {0}

= a7 =10}
Now a.l € aZ = {0}

= al=0

= a =0, a contradiction.
Hence R has no non-zero nil ideal.

7.4.9. Proposition. Let R be a left Noetherian ring. Prove that sum of nilpotent ideals of R is again a
nilpotent ideal of R.

Proof. Let R be a left Noetherian ring and {I R } .., be a family of nilpotent ideals of R.

Suppose, [ = Z:I/1 .

AeA

Then, I is an ideal of R, since sum of ideals is again an ideal.

Since R is left Noetherian, therefore I is generated by finite number of elements, say x,,x,,...,x, € /.

Now, x, € [ = there exists a finite subsets A, of A such that x, = Z I1,.
AeA,;
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Take, A':LnJAl..Then, X, = le Vi
i=1

AeA'
:>I:<x1,x2,...,xn>:ZIﬂgI 31:211
Ael' Ael’

and A’ is a finite subset of A . Thus, we may assume that / =/ +1,+/[,+...+/ and each I, is

nilpotent.

Thus, to prove the result it is equivalent to prove that sum of finite number of nilpotent ideals is again a
nilpotent ideal.

We prove the result by induction on m.
If m =2, then

11+I/ :V
12_ Ilﬂl2.

.. . I, . . R I+ I/ : i
Now, I, is nilpotent ideal of R, so A N, is nilpotent ideal of 0L Hence, 1, is a nilpotent
ideal. since I, is a nilpotent ideal of R, it follows that I;+1, is a nilpotent ideal of R.
Thus, the sum of two nilpotent ideals is again a nilpotent ideal of R.

Let m > 2 and suppose that the result hold for (m - 1) nilpotent ideals, that is, /, + [, + I, +...+1 , is

nilpotent.

Now, sum of two nilpotent ideals is again nilpotent, so the sum of /, +/, +I;+...+1, , and [, , that is,

I, +1,+1I,+...+1, is also nilpotent.

Remark. Let R be a ring and A and B be ideals of R such that 4 < B . Then, B is nilpotent iff both A
and % are nilpotent.

7.4.10. Proposition. In a left Noetherian ring, every nil ideal is nilpotent.

Proof. Let £={7,} _ be the family of all nilpotent ideals of Rand /=)"1, .

AeA

Then, I is an ideal of R. Also, we know that in a left Noetherian ring sum of nilpotent ideals is again
nilpotent and hence I is nilpotent ideal of R.

Consider the quotient ring 1% .

Let % be the nilpotent ideal of Iy , where J is an ideal of R containing I. Now, % is an nilpotent

ideal of 1% and I is nilpotent ideal of R. Hence, J € £.

Thus, there exists 4, € A such that J =1, .
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Now, I=>"1,21, =J 2l

AeA

=[1=J.

Hence, % is the zero ideal. that is, %: {I}.

Therefore, % has no non-zero nilpotent ideal. Since R is left nilpotent, therefore, % 1s left

Noetherian.

Thus, 1% is left Noetherian ring such that 1% has no non-zero nil ideal.

Let k be a nil ideal of R, then K + I is an ideal of R
:>K+% is an ideal of f%

K+1/ ~K K+1/ icnili K+1/ ; i R
Now, %_ %(ﬂ J and K is nil ideal, so 4 is nil ideal. Hence, % is a nil ideal of %

Since K+1 0 has no non-zero nil ideal.

Therefore,K"'%:{I} S K+l=I=Kcl.

Since I is a nilpotent ideal, it follows that K is also a nilpotent ideal of R. Thus, every nil ideal in R is
nilpotent.

7.4.11. Example. Example of a ring which is both Noetherian as well as Artinian.

Proof. Let R be a ring having only finite number of left ideals. Clearly, every properly ascending chain
or a properly descending chain is finite and therefore R is left Noetherian as well as left Artinian.

7.4.12. Example. Example of a ring which is Noetherian but not Artinian.

Solution. Let R=Z, the ring of integers. Now, since Z is a P.I.D., so every ideal of R is generated by a
single element that is, if I is an ideal of R, then 3 m € I, m=>0 such that [=mZ. that is, every ideal of R is
finitely generated, therefore R is Noetherian.

Let,=2Z, k>0
Now, 25"'€ I, and 28! =2. 2¥ € 2¥ 7=< 2*> =]}, so < 2""'>C I, and thus I+, S I,
Now, ke 1f2ke Ii+1, then 2k = 2k+1z, where z €Z, so 1=2z , ehich implies

1 ..
z=>€ Z., a contradiction.

Hence 2" ¢ /,,, and s0 Ii+1 ¢ I
Thus,
[, o] ..o >..

is an infinite properly descending chain of ideals of R.

Therefore, R is not Artinian.
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7.4.13. Example. Example of a ring which is neither Noetherian nor Artinian.

Solution. Let R be a ring and x, X», ..., X, be infinite numbers of commutingindeterminants over R.
Consider the polynomial ring R[xi, Xz, ..., Xn]=S. Let Ik be the left ideal of S generated by xi, Xz, ..., Xp,
that is,

Iy =< x4, X2, ..., Xp> = Sx; +Sx0+...+Sxk.
Now, it is clear that Iy & T+
If xi+1€ Ii+1.Then,
Xg+1= X1+ 1Xot+...+ nxg where 1€ S = R[x, X2, oeey Xpoo ]

The L.H.S. is a polynomial in the single indeterminates xx+; while the R.H.S. is a polynomial in the
indeterminants xj, X2, ..., Xn.

Therefore these two polynomials cannot be equal.
Hence, xy+1 € Ix = IkE Ii+1. Thus, we have
lclc.cl c..
is an infinite properly ascending chain of left ideals of S
Hence,S is not left Noetherian.
Similarly, we can prove that S is not right Noetherian.
Let, Bo={xiX2,. Xn.}
Bi- Bo-{x1}
Bo= Bo-{x1 X2}

B =Bo-{X1 X2, Xa}
Let J, be the left ideal of R[x; x> X, ]=S generated by B,
Now, it is clear that

J,oJ, D..0oJ, D..
is an infinite properly descending chain of left ideals of S.
Therefore, S is not left Artinian.

Similarly, we can prove that S is not right Artinian.

7.4.14. Proposition. Let R be a P.I.D and I# {0} be an ideal of R. Then, R/I is both Noetherian and
Artinian.

Proof. Since R is P.I.D.,so every ideal of R is generated by a single element. Thus, every ideal of R is
finitely generated and so R is Noetherian.
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Now, R is Noetherian and a quotient ring of a Noetherian ring is a Noetherian, so R/I is Noetherian.
Let a €l be such that a= aR=< a >. Since [# {0}, so a #0.
If a=1 or a unit, then [=R and

R/I=R/R = {R}= the zero ring .

But zero ring is trivially Artinian ring so R/I is Artinian.

a

Suppose, a is not a unit, then a = a;"a,*...a,” where each q;;is an irreducible element of R and each a;’

s are positive integers.
Let J/1 be an ideal of R/I. Here, J is an ideal of R, so there exists an element be J such that
J=bR=<b>

[=<a>Cc J=<b>

which implies a=br for some r€ R .
So, b/a.
Thus, b=al"ay*..a;” where 0 < f5; < a;

Now each f3; can be selected in (a; +1) ways.

Therefore, the number of choices for b is (a; +1) (a, +1)... (a,, +1), so the number of choices for b is
(ay 1) (ay +1)... (ay, +1), which means the number of choice for J/I is

(ay +1) (az +1)... (@, +1)
Thus, R/I has only finite number of ideals.
We know that a ring which has finite number of ideals is an Artinian ring.
7.5. Ring of Homomorphisms. The collection of all homomorphisms from a R-module M to itself is

denoted by Hom, (M, M) and is a ring.

7.5.1. Opposite ring. Let (R, +, . ) be a ring. Then the opposite ring of R, denoted by R, is defined as
the ring (R,+, 0), where the operation o is given as

xoy=y.x forallx,yeR
Results.
(1) Let R be a ring and R,, denote the ring of nxn matrices over R then (R,)” = (R®),
(i1) If R is a division ring then R is also a division ring.
(ii1) If a ring R is direct sum of rings Ry, Ry, ..., Ry thatis,, R=R;® R, ®... ®Ry, then
R?=R"® R ®..® RY.
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(iv) Let M be a R-module such that M = ZM , 1s the sum of a family of simple R-modules {M z}

AeA

AeA’

, suchthat M = @ ZMA

AeN’

then there exists a sub- family {M,},

In words, we can say that if a R-module M is sum of simple R-modules, then it can be represented as the
direct sum of a sub family of family of these simple R-modules.
Now, we will state some lemma’s, which will be useful for proving the Wedderburn- Artin Theorem.

7.5.2. Lemma. Let M =M @M, ®.. @M, be a left R-module (M; 's are submodules of M) and let Aj
= Homg (M; M;). Then,

All AIZ Aln

A, A .. A
HomR (M, M): 21 22 2n

A, A4, .. A4,

7.5.3. Lemma. Let M =M ©M,®..® M, where M; £M; i# and each M;is a simple R-sub module
of M. Then

Homgp (M, M)= 0
0 0 0 .. D,
where each Di=Aii and is a division ring.
7.54. Lemma. Let M =M ®M,®..®M, where M; is simple and M, =M,V i and j. Suppose

Hom (M,,M )= End,(M,)=D then, Homg (M, M) = M,(D)

D D .. D
where, M(D) = , where D is a division ring.
D D .. D

7.5.5. Lemma. Let A be minimal left ideal of R. Then either A’={0} or A=Re, ¢ is an idempotent in A.

7.5.6. Wedderburn- Artin Theorem. Let R be left (or right) artinian ring with unity and no nonzero
nilpotent ideal. Then, R is isomorphic to a finite direct sum of matrix rings over division rings.

Proof. First, we prove the following lemmas:

7.5.6.1. Lemma. Let R be a left Artinian ring with unity having no nonzero nilpotent ideals. Prove that
every nonzero left ideal of R contains nonzero idempotents.



Abstract Algebra 131

Proof. Let A be a nonzero left ideal of R and let
Ji={ BCA : B is a nonzero left ideal of R}
Now, A# {0}and ACA =>A€ J;, then
h#0
Since R is left Artinian, therefore, J; has a minimal element, say B.
Then, B is a minimal left ideal of R.
Then, either B = {0} or B = Re for some idempotent e € B.
Suppose B = {0}.
Consider the ideal J= BR
Then, J* = BRBR € BBR = B’R= {0}.
Thus, J is a nilpotent ideal of R. By the given condition J = {0}, that is, BR = {0}.

Now, b =b.1e bRE BR = {0}, which implies b=0 for all b€ B and so B = {0}, a contradiction. Hence,
B=Re

Now, BC Aande=e¢.1 e Re=B CA, so
e €EA.
Thus, A contains nonzero idempotents.

7.5.6.2. Lemma. Let R be a left artinian ring with unity having no nonzero nilpotent ideals. Then, every
left ideal of R is generated by an idempotent.

Proof. Let A be any left ideal of R and let S be the set of all nonzero idempotent of A. Then, S # @,
since by lemma 7.5.6.1., there exists an idempotent e € A.

Now, consider the left ideal R(1-e) N A, e € S.
and let
J={R(1-e)NA,e€S}
Since S is nonempty, so J #0
Again R is left Artinian, since J has a maximal element, say R(1-e) N A where e € S.
We claim that R(1-e) N A= {0}

Suppose R(1-e) N A # {0}. Then, it is a nonzero left ideal of R. Therefore, by lemma 7.5.6.1., this left
ideal has a nonzero idempotent, say e

Now, e¢; € R(1-¢) and e; EA
Now, e EA e £0=>¢e; €S.

Also, e,€ R(1-e) = e; =r1(1-¢) for some re R, so
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er e =r(l-e)e = r(e-¢’ ) =r(e-¢) =r.0 =0
Let e =+ e;-ee; € A. Then
e2=ce=(ete-ee)(eter-ce)
=e’+ee-e’eteese-eee-eee-ee’+eeee
=etee-ee 0 +e-0.e-e0-ee;+e.0.e;
=ete -ee=¢
ande; e =ee+e,’-eee; =0+e - 0. ¢
=e;#0
Thus, e e'#0=>¢e"#0 (™
Hence,e' is an idempotent and so e'e S.
But then R(1-¢') NA €]
Now, r;(1-e")=r1i(1-e -e; + e e;) =ri(1-e)- rir(1-e)+ rie r(1-e) = R(1-e) [ 1, 1}, € € R)
So, R(1-e")S R(1-e)
and thus, R(1-¢') NA € R(1-e) NA.
Now, e;€ R(1-e) NA.
Suppose, e;€ R(1-¢' ) NA. Then, e; = s(1-¢'), s€ R, therefore
ere' =s(e - e?)=se'-¢e') =0
a contradiction, because e;e' # 0 (by *)
Hence, e; € R(1 -¢') NA
However, in that case R(1 -¢') NA & R(1 -¢e) NA.
Now, R(1 - €' )NA and R(1 - e)NA € J, and R(1 - €) N A is the minimal element of J,, a contradiction.

The contradiction proves that

R(1 -e) NA = {0} (**)
Letae A, thena(l -e)=a-aec€ Aanda(l -¢) e R(1 -¢)
implies, a(l -e) e R(1 -e)NA = {0}
implies, a(l -e) e {0}
implies, a(l-e)=0forallae A
implies, a=aeforallae A
implies, AC Ae C Re CA

implies, A =Re
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Hence, every left ideal of R is generated by an idempotent.

7.5.6.3. Lemma. Let R be a left Artinian ring with unity having no non-zero nilpotent ideal. Let J be the

set of all non -zero minimal left ideals of R. Prove that R= Z 1, ; J={ L:xEA}.
AeA

Proof. Let J be the set of all minimal left ideals of R.

Since R is left Artinian, so J #@. Let J = { L. }xea. Put I= le . Then, I is a left ideal of R. By lemma

AeA

7.5.6.2., there exists an idempotent e € I such that I = Re.

We claim that R(1-e) ={0}. Now, this left ideal will contain a minimal left ideal of R, say B, so
B €J, whichimplies B S 1=Re

Now, B € Re N R(1 -¢)= {0} (By (**))

which implies B = {0}

A contradiction. Hence,
R(1-e) ={0} =R =Re.

Hence, I = Re =R, and so RZZIZ .

AeA

Proof of the theorem . We know that a minimal left ideal is a simple submodule of RX.

= R is the sum of simple submodules.
Therefore, there exists a subset A CA such that

R¥ = ®YL..
Now, 1ER = RR, therefore

1 = Xs1+ Xsot... Xon, where NiEA
SO, I = IXx1Htr Xsot.. T X,
s0, REILuytLot.+ LSR8
s0o, RUC L+ Lot.+ L,
We may assume that

R=R*=10LD .. DI,

where each I; is a minimal left ideal of R.
Suppose ;- R¢; where ¢; € I;is an idempotent.
Thus we may write

R=R{=R, @D Ru® .. ® Ry
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Suppose
R=R*=Re @ Rx® ... D Ren) D (R D Rx D ... ® Ren)

where ny =n, where every two ideals in every bracket are isomorphic as left R-module and the ideals in
the different brackets are not isomorphic. ( This can be done if necessary by rearranging and
renumbering the ideals in the desired form).

Take R=M; D M, D ... © My, where M; is the sum of left ideals in the ith bracket.

A4, 4, ... 4,
Then, Hom ( R®, R®) =
Ay Ay Ay )
where Aj; = Homgr (M;, M;)
We know that
HiIf X=X P Xu P ... ® X, where each Xjis a left R- module of M such that
Homg (X, Xi )={0} forall i#].

4, 0 .. 0
B 0 4, .. B
Then, Homg (Xj, Xj) = , where Ajj = Homg (X, Xj ).
0 0 .. 4,
) IfB=B, @& B,® ... BB, and C=C,PC, D ..PC, where Bi's & Cj's are simple

submodules of M & B;% C; forall 1#j, then Homg (B, C )= {0}

(iil) if A= A; @D A, @D ... DAnand each A;is simple and A;= A;  for all i#], then,
Homg (A, A ) = My, (D), where D = Homg (A, A} ) is a division ring.

Using all these, we conclude that
Ajj=Homr (M;, M ) = {0} if i#].

and  Aj=Homg (M, Mi) = M, (D,),

where D;= Homgp (Ren Re

i+ n_+1

)andie(Re, @ 0Rs, )

Hence,
M, (D) 0 0
0 M, (D,) .. 0
Hom(RR’RR); .(D2)
0 0 M, (D))
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We Know that R° = Homg (R® R®)

Hence, R is isomorphic to finite direct product of matrix rings over the division rings .

From this we conclude that R = ( R°")°? is also isomorphic to finite direct product of matrix rings over
the division ring.

7.5.7. Maschke Theorem. If F is the field of complex numbers and G is a finite group, then
F(G)=F, ®..®F,

for some positive integers 7,,...,7, .

Proof. We first prove that F (G) has no non zero nilpotent ideals.

Let G={g =e,8,,...8,}, and x=Y a,g € F(G). Set x*=) a,g", where @, denotes the complex

conjugate of «;. Then

n

n
xx* = z|ai|2 + Zﬂigi
i=2

i=1

for some B €F . Hence, xx*=0 implies Z|al.|2 =0, so each ¢; =0; that is x=0. Thus, xx*=0
i=1
implies x=0. Let A be a nilpotent ideal in F (G) Let ae A. Then aa*e€ A, so aa* is nilpotent, say

r

(aa*) =0.(We may assume r is even.) Set b=(aa*)2. Then b*> =0 and b=b*. Thus, bb*=0, which

gives (aa *)5 =b=0. Proceeding like this, we get aa*=0. Hence, a =0, which proves that 4=(0).

Hence, F (G) has no nonzero nilpotent ideals.

Further, F(G) is a finite-dimensional algebra with unity over the field F. Therefore, F(G) is an
artinian ring. Then by the Wedderburn —Artin theorem,

F(G)=D{"®..eD",

n

Where D", 1<i<k, are division rings. Now each D,(If) contains a copy K of F in its center. In this way
each D,Ef) is a finite dimensional algebra over K (How?). Let [D(i) K ] =n, and ae D" . Then
La,a’,....a" are linearly dependent over K. Thus, there exist ,,,,...,a, (not all zero) in K such that
ay+aja+..+a,a" =0. But since K is algebraically closed, o, + ,x +...+a,x" € K [x] has all its roots

in K. Hence, a € K, which shows that D) = K = F and completes the proof.
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7.6. Radical ideal. A two-sided ideal I in a ring R with unity is called a radical ideal with respect to a
specified property P if

1 . the ideal I possesses the property P and

2. the ideal I is maximal for the property P, that is, if J is a 2-sided ideal of R having the property P, then
Jc L

7.6.1. Jacobson radical. Let R be a ring with unity, then the Jacobson radical denoted by J(R) is a
radical ideal of R defined as

JR)={a e R:1-aisaunitinR}.
7.6.2. Example. In the ring of integers, J(Z )= (0).
7.6.3. Radical of an Art inian Ring.

7.6.4. Proposition. The Jacobson radical of an Artinian ring is the intersection of some finitely many

maximal left (right) ideals.

Proof. Let R be an Artinian ring and 7z be the family of all maximal left ideals of R. Let F be the family
of all left ideals of R each of which is an intersection of finitely many maximal left ideals of R.

Obviously F #¢ as ¢ < F. Since R is Artinian, therefore, F has a minimal member, say J, = ﬂM s
i=1

where M, € r . By definition of Jacobson radical, J(R) < Jo.

IfM e 7, thenJonMe F and so JynM = Jy, by the minimality of J, which means

that Jo < M, forall M € 7. Thus we get that J(R) < Jo < ﬂ M, =J and hence J = Jy, as required.

met

7.6.5. Exercise. In a commutative Artinian ring, the only maximal ideals are M,,1<i<n, where
J(R) =M,
i=1

7.7. Check Your Progress.

1. Every division ring is Noetherian.

2. An Artinian integral domain with atleast two elements is a field.
3. Subring of an Artinian ring need not be Artinian.

7.8. Summary.

In this section, we obtained results for Noetherian and Artinian. The relation between nil and nilpotent
ideals. Also, observed that every nil ideal is nilpotent but the converse statement need not be true. Also
the difference between these two is really interesting to study.
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